Физика и другие науки —

Введение. Физика – одна из основных наук о природе. Законы физики – это законы мира, в котором мы живем. Название этой науки – «physic» - ввел древнегреческий ученый Аристотель (384-333 г.г. до н.э.). В переводе на русский язык это слово означает «природа», но под природой Аристотель понимал не просто окружающий человека мир, не естественную среду его обитания, а сущность вещей и событий – то, из чего состоит все сущее в мире, и, то как, и почему именно так, все происходит в мире.

Предмет физики. Физика изучает основные фундаментальные законы природы, т. е. наиболее простые и общие формы движения материи.

Материя – это мельчайшие элементарные частицы: протоны, нейтроны, электроны, ядра и совокупности этих и иных частиц, которые представляют собой различные тела и, кроме того, известные физические поля – гравитационное (поле тяготения) и электромагнитное. Эти два вида материи (вещество и поле), хотя и глубоко различны по своим свойствам, неразрывно связаны друг с другом и могут переходить при определенных условиях друг в друга.

Связь и взаимодействие между частицами и телами, находящимися на каком-то расстоянии друг от друга по теории близкодействия, осуществляется особого вида материей – физическими полями.

К физическим формам движения материи относятся следующие: механические, гравитационные, тепловые, электромагнитные, атомные и ядерные.

Курс физики совместно с курсом высшей математики и теоретической механики составляет основу теоретической подготовки инженеров; без этой основы невозможна успешная деятельность инженера любого профиля. Физика наука опытная.

Методами физических исследований являются : опыт, гипотеза, теория, эксперимент.

Опыт – основной метод исследования в физике. Опыт – это наблюдение исследуемого явления в точно контролируемых условиях, позволяющих следить за ходом явления и воссоздать его каждый раз при повторении этих условий.

Гипотеза – научное предположение, выдвигаемое для объяснения какого-либо факта или явления. Гипотеза подтверждается опытом.

Эксперимент – научно поставленный опыт с целью проверки гипотезы.

Физическая теория – система основных идей, обобщающих опытные данные и отражающих объективные закономерности природы.

Физическая теория дает объяснения целой области явлений природы с единой точки зрения.

§ 2. Роль физики в развитии техники и влияние техники на развитие физики

Физика тесно связана с техникой. До середины прошлого столетия связь между физикой и техникой носила такой характер, когда техника шла впереди. Создавались технические устройства, возникали технические проблемы, которые затем вызывали к жизни соответствующие физические исследования. VIII век – создана паровая машина.

Начало XIX века – встал вопрос об увеличении кпд тепловых машин.

Сади Карио решил эту проблему, и его работа стала фундаментом для возникновения общего учения о передаче и превращении энергии – термодинамики.

Затем крупные физические открытия стали приводить к созданию новых отраслей техники. Академик С.И. Вавилов (1891-1955), счоветский физик и общественный деятель, сказал, что теснейшая связь физики с другими отраслями естествознания привела к тому, что физика глубочейшими корнями вросла в химию, геологию, астрономию, биологию и т.д.

Физика является основой многих технических наук: теоретической механики, сопромата, электротехники.

Техника стимулирует развитие физики и наоборот. Могучая ускорительная техника способствует развитию исследований по физике атомного ядра и элементарных частиц.

Содружество физики и техники приводит к сокращению временных интервалов между научными открытиями и их технической реализацией.

Фотография -110 лет

Радио – 50 лет

Транзистор – 15 лет

Лазер – 7 лет

Физика тесно связана с математикой. Без математического описания невозможен точный инженерный расчет и развитие физической теории.

Физика – база для создания новых отраслей техники, или научная база, на которой должна основываться общетехническая подготовка специалистов.

Физику подразделяют на классическую и квантовую. Начало классической физики было положено И. Ньютоном, сформировавшим основные законы механики, а завершено развитие классической физики созданием в 1905 г. А. Эйнштейном специальной теории относительности и учитывающей требования этой теории релятивисткой механики.


Роль физики в развитии общества.

Как отмечено в Законе «Об образовании», главной задачей системы образования является создание необходимых условий для получения образования, направленных на формирование, развитие и профессиональное становление личности на основе национальных и общечеловеческих ценностей, достижений науки и практики. Ведущую роль при определении основных тенденций развития образования должны играть такие факторы, как возрастание роли умственной деятельности во всех сферах народного хозяйства, повышение творческого потенциала личности. В связи с этим все более и более значимыми в области образования подрастающего поколения становятся задачи развития, в свою очередь, обеспечивающие рост интеллектуального уровня учащихся.
Получить основательные специальные знания в различных областях техники и технологии, сформировать определенную культуру научного мышления можно только на добротной основе общего естественнонаучного образования. Как известно, фундаментом естественных и многих технических наук является физика. Основы физического образования закладываются в школе. В то же время не секрет, что в последние годы наблюдается заметное снижение интереса учащихся к физике как к предмету, о чем свидетельствуют низкие показатели по физике результатов как ЕГЭ, так и ПГК студентов. Анализ показывает, что у большинства студентов, поступивших в технический вуз, самые низкие баллы в тестах по физике. Или еще один яркий пример. В последнее время наметилась тенденция спада участия школьников в разработке научных проектов по физике.
Указанные факты говорят об отсутствии понимания учащимися роли физики как в окружающем их мире, так и в жизни, в развитии науки и техники в целом.
Таким образом, реальность сегодняшнего дня остро ставит вопросы осмысления самой сущности образования в новых условиях, прежде всего методологических основ, которые должны рассматриваться в контексте подготовки специалистов для тех или иных отраслей народного хозяйства, а также и в более широком смысле – в контексте культуры общества и ее воспроизводства. Нынешнее состояние и дальнейшее развитие экономики республики требует подготовки высококвалифицированных и способных к динамичному самообразованию кадров, которые смогут удовлетворить потребности быстро развивающихся отраслей экономики и промышленности. Одной из главных характеристик личности профессионала- специалиста сегодня является способность его не только к решению уже поставленных, но и самостоятельной постановке новых проблем. Наиболее значимым качеством современного специалиста становится не просто большой объем профессиональных знаний, умений и навыков, но и способность к творческому решению профессиональных задач, т.е. к новым изобретениям и открытиям, а такая способность зависит от самого человека, от особенностей его личности. Отсюда вытекают и специфические задачи современной профильной школы. Здесь, как хотелось бы еще отметить, невозможна творческая деятельность без высокого уровня мотивации к будущей профессиональной деятельности и приобретению новых знаний, причем мотивации внутренней, составляющей потребность человека. К сожалению, это качество у большинства школьников прививается с трудом. Тому есть объяснение – во-первых, школьная программа зачастую становится пределом, потолком, который является стратегическим барьером, который по «максимуму надо взять» как в сознании самого школьника, так и для учителя, причем, чтобы успешно сдать тесты ЕГЭ, достаточно формального заучивания формул и определений. Во-вторых, определенную роль может играть излишняя теоретизированность и оторванность от окружающей действительности школьной программы физики. Как выправить создавшееся положение?
В связи с указанным выше задача возлагается на университеты, которые ответственны за ряд проблем высшего и среднего образования. Ведь для успешного обучения в вузе как минимум, нужны студенты с достаточным средним образованием, т.е. проблемы школы затрагивают интересы вуза. При нынешнем положении дел школа и вуз не могут жить каждый сам по себе. Университетам пора повернуться лицом к своим «поставщикам», иметь с ними постоянную связь и принимать деятельное участие в довузовском образовании своих будущих студентов.

Особая роль физики в развитии общества.
В настоящее время динамично развивается научно-технический прогресс. Произошли глубокие, качественные изменения во многих областях науки и техники. Появление НТП связанно с великими открытиями в области фундаментальной физики. Открытие радиоактивности, электромагнитных волн, ультразвука, реактивного движения и т.д. привело к тому, что человек применяя эти знания, двинул далеко вперед развитие техники. Человек научился передавать на расстоянии не только звук, но и изображение. Человек вышел в космос высадился на луну, увидел ее обратную сторону. С помощью уникальных оптических приборов возможно узнать из какого вещества состоят далекие планеты. Полученные новые данные когда-нибудь позволят человеку сделать новые невероятные открытия, которые приведут к новым достижениям в науки и технике. Во всем мире наблюдаются глубокие качественные перемены в основных отраслях техники. НТП коренным образом изменил роль науки в жизни общества. Наука стала непосредственной производительной силой.
Прикладная электроника бывшая до недавнего времени частью общей физики стала независимой областью науки, так же как и физическая химия, геофизика и астрофизика отделились от общей физики. Основные достижения в последние годы были получены на стыке разных наук - в биофизике, физике твердых тел и астрофизике. Расшифровка структур ДНК, синтез сложных протеиновых молекул и достижения генной инженерии были осуществлены благодаря достижениям спектроскопии, рентгеновской кристаллографии и электронному микроскопу. Все большее значение приобретает ультразвук в научных изысканиях и практических применениях. Формируется новое направление химии - ультразвуковая химия. Возникли новые области применения ультразвука: микроскопия, голография, квантовая акустика и т.д. Ультразвук помогает морякам обнаруживать различные подводные объекты, медикам проводить диагностику заболеваний. Ультразвук строит и разрушает, режет и сверлит, штампует и паяет, очищает, сортирует, стерилизует, разведывает. Его взяли на вооружение геологоразведчики и нефтяники. И это еще не все, перечень применения ультразвука можно продолжить.
Изобретение транзистора привело к настоящей революции в области радиоэлектроники. На основе транзисторной технологии появилось новое направление в науке и технике - микроэлектроника. Что позволило человеку построить первые полупроводниковые ЭВМ. Физика вносит решающий вклад в создание современной вычислительной техники, представляющей собой материальную основу информатики. За короткий промежуток времени вычислительная техника шагнула далеко в перед. Современные персональные компьютеры имеют огромную скорость обработки информации, большие объемы памяти, позволяющие осуществлять практически любые расчеты. С помощью периферийных устройств компьютер видит, слышит, рисует, чертит, печатает, говорит, показывает, играет в игры, обучает, управляет технологическими процессами на производстве, следит за космическим полетом и т.д. Трудно представить себе сегодняшний день без компьютера. С помощью компьютера в наши дни осуществляется связь по компьютерной сети с любой точки земного шара.
Таким образом, идет обмен видео, аудио и текстовой информации между людьми в разных странах. Это позволяет людям понять друг друга лучше, узнать много нового друг о друге, получить требуемую информацию. Электронная почта в считанные секунды доставит ваше сообщение огромного объема в любой уголок земли. Развитие компьютерной техники и технологии, дают возможность ученым физикам производить сложнейшие расчеты, анализировать вероятностные ситуации, строить математические модели различных процессов. Т.е. развитие самой физики не возможно без участия ее собственного детища.
Точно такие же примеры можно привести относительно любого раздела физики. Любое открытие новых физических законов немедленно приводит к использованию их в развитии других наук и техники. А это в свою очередь приводит к новым открытиям в фундаментальной физики. Таким образом, научно технический прогресс не возможно остановить. Развитие физики принесло не только фундаментальные изменения в представлении о материальном мире, но и с применением современных технологий, основанных на лабораторных открытиях, происходят прогрессивные изменения в обществе. Благодаря развитию науки техники люди на планете Земля стали ближе - пребывая в едином информационном пространстве. Теперь уже не кажется, что Земля бесконечно велика и на ее поверхности и в ее недрах можно делать что угодно. Необдуманные действия человека, вооруженного достижениями той же самой науки и техники, приводят к необратимым и часто разрушительным последствиям для природы и самого человека.
Сегодня прогресс достиг небывалых темпов роста и продолжает динамично развиваться. Современный мир сложен, многообразен, динамичен, пронизан противоборствующими тенденциями. Он противоречив, но взаимозависим, во многом целостен.
Если двадцатый век называли веком науки и техники, то нынешний век будет веком информационным. Главной ценностью становится информация. Еще в XIX в. появились первые признаки того, что наука стала мировой, объединив усилия ученых разных стран. Возникла, развилась в дальнейшем интернационализация научных связей. Расширение сферы применения науки в конце XIX - начале XX в. привело к переменам в жизни десятков миллионов людей, проживающих в развитых промышленных странах, и объединению их в новую экономическую систему. Возрастание роли техники и технического знания в жизни общества характеризуется зависимостью науки от научно-технических разработок, усиливающейся технической оснащенностью, созданием новых методов и подходов, основанных на техническом способе решения проблем в разных областях знания, в том числе, и военно-техническом знании. Современное понимание технического знания и технической деятельности связывается с традиционным кругом проблем и с новыми направлениями в технике и инженерии, в частности с техникой сложных вычислительных систем, системотехникой и др. Научно-технический прогресс выдвинул на передний план проблему применения техники нового типа. Подобная техника - электронно-вычислительные машины (ЭВМ), автоматизированные системы управления (АСУ) - в наше время проникла в самые разнообразные области общественной жизнедеятельности и науки. От эффекта ее практического применения стали непосредственно зависеть успехи в развитии этих важнейших областей. Следует отметить, что развитие техники происходило не только по пути ее усложнения, но также и в направлении повышения ее качества и надежности. Компьютеризация может привести не только к позитивным, прогрессивным изменениям в жизни человека, но и спровоцировать негативные изменения, например, такие как уменьшение интеллектуальной активности человека, снижению творческой активности. Таким образом, сейчас приходится сталкиваться с положительными и отрицательными последствиями применения научных достижений.
История науки знает немало выдающихся исследователей отдельных областей знаний, но значительно более редко встречались учёные, которые своей мыслью охватывали все знания о природе своей эпохи и пытались дать им синтез. Таковы были во второй половине XV века и в начале XVI в. Леонардо да Винчи, в XVIII столетии М.В. Ломоносов (1711-1765) и его французский современник Ж.Л. Бюффон (1707-1788). А также наш крупнейший естествоиспытатель Владимир Иванович Вернадский (1863-1945) по строю мыслей и широте охвата природных явлений он стоит в одном ряду с этими великими учёными. В.И. Вернадский работал на столетие позже А. Гумбольдта, когда объём точных сведений во всех областях естествознания неизмеримо возрос, стали совершенно другими техника и методика исследований, а многие научные направления появились впервые, в значительной мере по инициативе, или при активном участии В.И Вернадского. Учёный был исключительно эрудированным, он свободно владел многими языками, следил за мировой научной литературой, переписывался с крупнейшими зарубежными деятелями культуры. Это позволяло ему всегда быть в курсе событий в научном мире, а в своих выводах и обобщениях заглядывать далеко вперёд. Ещё в 1910 году в записке «О необходимости исследования радиоактивных минералов Российской империи» В.И. Вернадский предсказал неизбежность практического использования ядерной энергии. (Правда, никто не обратил тогда внимания на его слова.) Вернадский также создал учение о ноосфере – «мыслящей оболочке Земли». Об обществе двадцатого века учёный писал: «Такой совокупности общечеловеческих действий и идей никогда раньше не бывало, и ясно, что остановлено это движение не может. В частности, перед учеными стоят для ближайшего будущего небывалые для них задачи сознательного направления организованности ноосферы, отойти от которой они не могут, так как к этому направляет их стихийный ход роста научного знания». Одной из важнейших проблем формирования организованности ноосферы является вопрос о месте и роли науки в жизни общества, о влиянии государства на развитие научных исследований. Вернадский высказывался за образование единой (на государственном уровне) научной человеческой мысли, которая являлась бы решающим фактором в ноосфере и создавало бы для ближайших поколений лучшие условия жизни. Первоочередные вопросы, которые необходимо решить на этом пути, это – «вопрос о плановой, единообразной деятельности для овладения природой и правильного распределения богатств, связанный с сознанием единства и равенства всех людей, единства ноосферы» идея о государственном объединении усилий человечества. Поражает созвучность идей Вернадского нашему времени. Постановка задач сознательного регулирования процесса созидания ноосферы чрезвычайно актуальна для сегодняшнего дня. К этим задачам Вернадский также относил искоренение войн из жизни человечества. Он большое внимание уделял решению задач демократических форм организации научной работы, образования, распространения знаний среди народных масс.
В 1922 г. учёный снова вернулся к этой теме. Ещё тогда он предупреждал: «Недалеко время, когда человек получит в свои руки атомную энергию, такой источник силы, который даст ему возможность строить свою жизнь, как он хочет…Сумеет ли человек воспользоваться этой силой, направлять её на добро, а не на самоуничтожение…»
Немецкий философ Альберт Швейцер в своей Нобелевской речи (Осло 1952) очень чётко охарактеризовал состояние человечества на данный момент: «Человек превратился в сверхчеловека… Но человек, наделённый сверхчеловеческой силой, ещё не поднялся до уровня сверхчеловеческого разума… Наша совесть должна пробудиться от сознания того, что чем больше мы превращаемся в сверхлюдей, тем бесчеловечнее мы становимся» . Альберт Швейцер считал, что люди смогут достигнуть понимания только тогда, когда в государстве будет господствовать новая мораль.
Б.Рассел и А.Эйнштейн призывали людей «научиться мыслить по-новому», так, чтоб «разногласия решались не с помощью оружия». Дальнейшая судьба человечества зависит от того, как будут решаться глобальные проблемы. В современном мире жить, отгородившись от всего, уже невозможно. Нельзя делать это в местном масштабе. Одно развитие техники не решит всех проблем, необходима ещё и социальная перестройка.
Итак, научно-технические достижения идут не только на благо людям, иногда они приносят вред и создают новые проблемы. Но жизнь современного человека невозможна без науки. Наверное, люди не в силах остановить прогресс, даже если очень этого захотят. Необходимо использовать достижения во имя мира и взаимного уважения всех людей. Развитие науки не должно становиться из средства целью.
Андре Мишель Львов(1902) – французский генетик и вирусолог, иностранный член Академии Наук РФ, лауреат нобелевской премии в интервью, данном в 1991 издательству «Москва», говорит том, как наука влияет на жизнь общества: «Наука, и её применение радикально меняют судьбы и людей и структуру общества. В развитом обществе доля времени, которую люди тратят на удовлетворение материальных потребностей, значительно уменьшилось и продолжает уменьшаться. Человек может больше времени уделять собственным интересам. Наука не является чем-то постоянным и неизменным, её развитие приводит к постоянному изменению концепций. Все утверждения в науке ежедневно подвергаются строгой критике». Андре Львов считает, что наука, как и искусство должна развиваться свободно, любое вмешательство в неё некомпетентных лиц сказывается не только на её качестве (пример: запрет генетики в СССР), но и на жизни всего общества (применение научных достижений во вред).
«Чтобы выжить, человечество должно выработать свое новое политическое мышление, новый взгляд на отношения человека с человеком, государства с государством. В связи с этим открываются новые возможности расширения диалога, сотрудничества и взаимопонимания о ряду важных вопросов. Без такого сотрудничества не сохранить мира, не решить глобальных проблем современности. Массовая коммуникация имеет прямое отношение ко всем этим проблемам и сама является одной из важнейших глобальных проблем».
и т.д.................

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Роль физики в нашей жизни

1. Что такое Физика

Фи м зика -- область естествознания. Наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении. Законы физики лежат в основе всего естествознания

Термин «физика» впервые появился в сочинениях одного из величайших мыслителей древности -- Аристотеля, жившего в IV веке до нашей эры. Первоначально термины «физика» и «философия» были синонимичны, поскольку в основе обеих дисциплин лежало стремление объяснить законы функционирования Вселенной. Однако в результате научной революции XVI века физика выделилась в отдельное научное направление.

В русский язык слово «физика» было введено М. В. Ломоносовым, В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов и позже мобильных телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров.

Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

2. Физика в современной жизни

Говоря о роли физики, выделим три основных момента. Во-первых, физика является для человека важнейшим источником знаний об окружающем мире. Во-вторых, физика, непрерывно расширяя и многократно умножая возможности человека, обеспечивает его уверенное продвижение по пути технического прогресса. В-третьих, физика вносит существенный вклад в развитие духовного облика человека, формирует его мировоззрение, учит ориентироваться в шкале культурных ценностей. Поэтому будем говорить соответственно о научном, техническом и гуманитарном потенциалах физики.

Эти три потенциала содержались в физике всегда. Но особенно ярко и весомо они проявились в физике XX столетия, что и предопределило ту исключительно важную роль, какую стала играть физика в современном мире.

3. Физика как важнейший исто чник знаний об окружающем мире

Как известно, физика исследует наиболее общие свойства и формы движения материи. Она ищет ответы на вопросы: как устроен окружающий мир; каким законам подчиняются происходящие в нем явления и процессы? Стремясь познать «первоначала вещей» и «первопричины явлений», физика в процессе своего развития сформировала сначала механическую картину мира (XVII1--XIX вв.), затем электромагнитную картину (вторая половина XIX -- начало XX в.) и, наконец, современную физическую картину мира (середина XX в.).

В начале нашего столетия была создана теория относительности -- сначала специальная, а затем общая. Ее можно рассматривать как великолепное завершение комплекса интенсивно проводившихся в XIX столетии исследований, которые привели к созданию так называемой классической физики. Известный американский физик В. Вайскопф так охарактеризовал теорию относительности: «Это совершенно новый набор концепций, в рамках которых находят объединение механика, электродинамика и гравитация. Они принесли с собой новое восприятие таких понятий, как пространство и время. Эта совокупность идей в каком-то смысле является вершиной и синтезом физики XIX в. Они органически связаны с классическими традициями»

Тогда же, в начале века начала создаваться, а к концу первой трети столетия обрела достаточную стройность другая фундаментальная физическая теория XX в.-- квантовая теория. Если теория относительности эффектно завершала предшествовавший этап развития физики, то квантовая теория, решительно порывая с классической физикой, открывала качественно новый этап в познании человеком материи. «Для квантовой теории характерен именно разрыв с классикой,-- писал Вайскопф.-- Это шаг в неизведанное, в мир явлений, которые не умещались в рамки идей физики XIX в. Надо было создать новые приемы мышления, чтобы понять мир атомов и молекул с его дискретными энергетическими состояниями и характерными особенностями спектров и химических связей»

Используя квантовую теорию, физики совершили в XX в. в буквальном смысле слова прорыв в понимании вопросов, касающихся моля и вещества, строения и свойств кристаллов, молекул, атомов, атомных ядер, взаимопревращений элементарных частиц. Возникли новые разделы физики, такие, как физика твердого тела, физика плазмы, атомная и молекулярная физика, ядерная физика, физика элементарных частиц. А в традиционных разделах, например оптике, появились совершенно новые главы: квантовая оптика, нелинейная оптика, голография и др.

Физика исследует фундаментальные закономерности явлений; это предопределяет ее ведущую роль во всем цикле естественно-математических наук. Ведущая роль физики особенно ярко выявилась именно в XX в. Один из наиболее убедительных примеров -- объяснение периодической системы химических элементов на основе квантовомеханических представлений. На стыке физики и других естественных наук возникли новые научные дисциплины.

Химическая физика исследует электронное строение атомов и молекул, физическую природу химических связей, кинетику химических реакций.

Астрофизика изучает многообразие физических явлений во Вселенной; на широко применяет методы спектрального анализа и радиоастрономических наблюдений. В отдельные разделы астрофизики выделены: физика Солнца, физика планет, физика межзвездной среды и туманностей, физика звезд, космология. Биофизика рассматривает физические и физико-химические явления в живых организмах, влияние различных физических факторов на живые системы. В настоящее время из биофизики выделились самостоятельные направления биоэнергетика, фотобиология, радиобиология.

Геофизика исследует внутреннее строение Земли, физические процессы, происходящие в ее оболочках. Различают физику твердой Земли, физику моря и физику атмосферы.

Отметим также агрофизику, изучающую физические процессы в почве и растениях и разрабатывающую способы регулирования физических условий жизни сельскохозяйственных культур; петрофизику, исследующую связь физических свойств горных пород с их структурой и историей формирования; психофизику, р ассматривающую количественные отношения между силой и характером раздражителя, с одной стороны, и интенсивностью раздражения -- с другой.

4. Физика как основа научно-технического прогресса

Трудно переоценить роль фундаментальных физических исследований в развитии техники. Так, исследования тепловых явлений в XIX в. способствовали быстрому совершенствованию тепловых двигателей. Фундаментальные исследования в области электромагнетизма привели к возникновению и быстрому развитию электротехники. В первой половине XIX в. был создан телеграф, в середине века появились электрические осветители, а затем электродвигатели. Во второй половине XIX в. химические источники электрического тока стали вытесняться электрогенераторами. Девятнадцатый век завершился триумфально: появился телефон, родилось радио, был создан автомобиль с бензиновым двигателем, в ряде столиц открылись линии метрополитена, зародилась авиация. В 1912 г. В. Я. Брюсов написал строки, в которых хорошо отразилось победное настроение тех лет: Свершились все мечты, что были так далеки. Победный ум прошел за годы сотни миль. При электричестве пишу я эти строки, И у ворот, гудя, стоит автомобиль.

Первый фотоаппарат

А между тем научно-технический прогресс только еще набирал темп; был изобретен транзистор); в 60-х годах родилась микроэлектроника. Прогресс в области электроники привел к созданию совершенных систем радиосвязи, радиоуправления, радиолокации. Развивается телевидение, сменяются одно за другим поколения ЭВМ (растет их быстродействие, совершенствуется память, расширяются функциональные возможности), появляются промышленные роботы. В 1957 г. состоялся вывод на околоземную орбиту первого искусственного спутника Земли; 1961 г.-- полет Ю. А. Гагарина -- первого космонавта планеты; 1969 г.-- первые люди на Луне. Нас почти уже не удивляют поразительные успехи космической техники. Мы привыкли к запускам искусственных спутников Земли (их число давно перевалило за тысячу); становятся все более привычными полеты космонавтов на пилотируемых космических кораблях, их многодневные вахты на орбитальных станциях. Мы познакомились с обратной стороной Луны, получили фотоснимки поверхности Венеры, Марса, Юпитера, кометы Галлея.

Фундаментальные исследования в области ядерной физики позволили вплотную приступить к решению одной из наиболее острых проблем -- энергетической проблемы. Первые ядерные реакторы появились в 40-х годах, а в 1954 г. в СССР начала действовать первая в мире атомная электростанция -- родилась ядерная энергетика. В настоящее время на Земле работает более трехсот АЭС; они дают около 20% всей производимой в мире электрической энергии. Развернуты интенсивные исследования по термоядерному синтезу; прокладываются пути к термоядерной энергетике.

Успехи в исследовании физики газового разряда и физики твердого тела, более глубокое понимание физики взаимодействия оптического излучения с веществом, использование принципов и методов радиофизики -- все это предопределило развитие еще одного важного научно-технического направления -- лазерной техники. Это направление возникло всего тридцать лет назад (первый лазер создан в 1960 г.), но уже сегодня лазеры находят широкое применение во многих областях практической деятельности человека. Лазерный луч выполняет разнообразные технологические операции (сваривает, режет, пробивает отверстия, закаливает, маркирует и т. д.), используется в качестве хирургического скальпеля, выполняет точнейшие измерения, трудится на строительных площадках и взлетно-посадочных полосах аэродромов, контролирует степень загрязнения атмосферы и океана. В ближайшей перспективе лазерная техника позволит реализовать в широких масштабах оптическую связь и оптическую обработку информации, произвести своеобразную революцию в химии (управление химическими процессами, получение новых веществ и, в частности, особо чистых веществ) и осуществить управляемый термоядерный синтез.

Запуск ракеты

физика относительность элемент квантовомеханический

Первый полет в космос

Первое радио

Первый действующий танк

Первый самолет

Первая радиостанция

Говоря о связи между развитием физики и научно-техническим прогрессом, следует отметить, что эта связь двусторонняя. С одной стороны, достижения физики лежат в основе развития техники. С другой -- повышение уровня техники создает условия для интенсификации физических исследований, делает возможным постановку принципиально новых исследований. В качестве примера можно указать на важнейшие исследования, выполняемые на ядерных реакторах или на ускорителях заряженных частиц.

5. Физика как важнейший к омпонент человеческой культуры

Воздействуя решающим образом на научно-технический прогресс, физика тем самым оказывает существенное влияние и на все стороны жизни общества, в частности на человеческую культуру. Однако в данном случае мы имеем в виду не это опосредствованное влияние физики на культуру, а влияние непосредственное, позволяющее говорить о самой физике как о компоненте культуры. Иными словами, речь идет о гуманитарном содержании самого предмета физики, которое связано с развитием мышления, формированием мировоззрения, воспитанием чувств. Мы имеем в виду органическую связь физики с развитием общественного сознания, с воспитанием определенного отношения к окружающему миру.

Утверждая материалистическую диалектику, физика XX в. открыла ряд исключительно важных истин, значимость которых выходит за рамки самой физики, истин, ставших общечеловеческим достоянием.

Во-первых, была доказана фундаментальность статистических закономерностей как соответствующих более глубокому этапу (по сравнению с закономерностями динамическими) в процессе познания мира. Было показано, что вероятностная форма причинности является основной, а жесткая, однозначная причинность есть не более чем частный случай. Физика предоставила нам уникальную возможность: на основе статистических теорий рассмотреть количественно диалектику необходимого и случайного. Выходя за рамки собственных задач, современная физика показала, что случайность не только путает и нарушает наши планы, но и может нас обогащать, создавая новые возможности.

Во-вторых, физика XX в. продемонстрировала всеобщность принципа симметрии, заставила значительно глубже взглянуть на симметрию, расширив это понятие за рамки геометрических представлений, а главное, рассмотрела диалектику симметрии и асимметрии, связав ее с диалектикой общего и различного, сохранения и изменения. Был поставлен вопрос о симметрии-асимметрии физических законов, в связи с чем была выявлена особая роль законов сохранения. Выходя за рамки собственных задач, физика наглядно показала, что симметрия ограничивает число возможных вариантов структур или вариантов поведения систем. Это обстоятельство исключительно важно, так как дает возможность во многих случаях находить решение как результат выявления единственно возможного варианта, без выяснения подробностей (решение из соображений симметрии).

В-третьих, физика XX в. показала, что по мере углубления наших знаний происходит постепенное стирание граней, разрушение перегородок. Так, стирается грань между корпускулярным и волновым движениями, между веществом и полем. Оказалось, что как вещество, так и поле состоят из элементарных частиц и, более того, пустота -- это вовсе не пустота в обычном понимании, а физический вакуум, «наполненный» виртуальными частицами. Нормой поведения для частиц, рассматриваемых в современной физике, являются взаимопревращения, поэтому мир предстает перед нами как единое целое. В этом мире понятие полностью изолированного объекта по сути дела отсутствует. Здесь уместно напомнить известное ленинское замечание, что в природе нет абсолютных граней - , что «все грани в природе условны, относительны, подвижны, выражают приближение нашего ума к познанию материи»

В-четвертых, современная физика подарила нам принцип соответствия. Он возник в квантовой механике на этапе ее начального развития, но затем превратился в общий методологический принцип, отражающий диалектику процесса познания мира. Он демонстрирует важное положение диалектики: процесс познания -- это процесс постепенного и бесконечного приближения к абсолютной истине через последовательность относительных истин. Принцип соответствия показывает, как именно в физике реализуется указанный процесс приближения к истине. Это не механическое добавление новых фактов к уже известным, а процесс последовательного обобщения, когда новое отрицает старое, но отрицает не просто, а с удержанием всего того положительного, что было накоплено в старом. «Изучение физики дает возможность показать, что все физические представления и теории отражают объективную реальность лишь приближенно, что наши представления о мире непрерывно углубляются и расширяются, что процесс познания материального мира бесконечен»

Наши представления о мире... Нет необходимости доказывать, что современное миропонимание -- важный компонент человеческой культуры. Каждый культурный человек должен хотя бы в общих чертax представлять, как устроен мир, в котором он живет. Это необходимо не только для общего развития. Любовь к природе предполагает уважение к происходящим в ней процессам, а для этого надо понимать, по каким законам они совершаются. Мы имеем много поучительных примеров, когда природа наказывала нас за наше невежество; пора научиться извлекать из этого уроки. Нельзя также сбывать, что именно знание законов природы есть эффективное оружие борьбы с мистическими представлениями, есть фундамент атеистического воспитания.

Современная физика вносит существенный вклад в выработку нового стиля мышления, который можно назвать планетарным мышлением. Она обращается к проблемам, имеющим большое значение для всех стран и народов. Сюда относятся, например, проблемы солнечно-земных связей, касающиеся воздействия солнечных излучений на магнитосферу, атмосферу и биосферу Земли; прогнозы физической картины мира после ядерной катастрофы, если таковая разразится; глобальные экологические проблемы, связанные с загрязнением Мирового океана и земной атмосферы.

В заключение отметим, что, воздействуя на самый характер мышления, помогая ориентироваться в шкале жизненных ценностей, физика способствует, в конечном счете, выработке адекватного отношения к окружающему миру и, в частности, активной жизненной позиции. Любому человеку важно знать, что мир в принципе познаваем, что случайность не всегда вредна, что нужно и можно ориентироваться и работать в мире, насыщенном случайностями, что в этом изменяющемся мире есть тем не менее «опорные точки», инварианты (что бы ни менялось, а энергия сохраняется), что по мере углубления знаний картина неизбежно усложняется, становится диалектичнее, так что вчерашние «перегородки» более не годятся.

Мы убеждаемся, таким образом, что современная физика действительно содержит в себе мощный гуманитарный потенциал. Можно не считать слишком большим преувеличением слова американского физика И. Раби: «Физика составляет сердцевину гуманитарного образования нашего времени»

6. Стихи

1. В нашей жизни электричества -

Непомерное количество.

Даже Папа, их величество,

Чтоб величье ощущать,

Преуспев в борьбе с язычеством,

Приказал свои владычества

В самом центре католичества

Ярко ночью освещать.

Ну а мы, махнув по стопочке,

Жмем, расслабившись, на кнопочки, .

И как в сказке - вот вам, опачки!

Телевизор уж включен.

И в квартирах всюду лампочки,

А в глазах от счастья бабочки.

Греют нас электротапочки,

Погружая в сладкий сон.

Нож на кухне - электрический,

Режет все автоматически.

И вращаясь истерически

Ездят щетки по зубам. .

Преуспел прогресс технический,

Даже к близости физической

Нас матрас терапевтический

По ночам толкает сам.

У приборов электрических

В рабстве мы уже практически,

Заменил мозги фактически

Электронный интеллект.

Словно в дреме наркотической

Пребывая флегматически,

Станем мы для электричества

Не нужны в один момент…

2. Физика учит хозяйку,

Как пищу готовить быстрей.

Зимою выращивать розы,

Тепло сберегать в квартире своей.

Физика учит плавать

Тяжёлый морской теплоход,

Летать воздушный лайнер,

Космический звездоход.

Физика в жизнь воплощает

Все замыслы и мечты.

Загадки природы она объясняет,

Всем, кто с нею на ты.

7. Загадки

В загадках нужно учесть следующий момент:

Какое физическое явление (объект) отражено в загадке.

Какие свойства загадываемого явления, объекта отражены в загадке а какие нет.

С каким явлением или объектом сравниваем загадываемое?

Я в Москве, он в Ленинграде

В разных комнатах сидим

Далеко, а будто рядом

Разговариваем с ним. (телефон)

Чудо-птица алый хвост

Полетела в стаю звёзд. (ракета)

Я под мышкой посижу

И что делать укажу

Или разрешу гулять

Или уложу в кровать (термометр)

Через нос проходит в грудь

И обратный держит путь

Он не видимый и всё же

Без него мы жить не можем. (воздух)

В нашей комнате одно

Есть волшебное окно

В нём летают чудо - птицы,

Бродят волки и лисицы,

Знойным летом снег идёт,

И зимою сад цветёт.

В том окне чудес полно

Что же это за окно. (телевизор)

Сначала - блеск

За блеском - треск

За треском - плеск. (молния)

Никто его не видывал,

А слышать всякий слыхивал

Без тела, а живёт оно

Без языка кричит. (эхо)

Пушистая вата

Плывёт куда-то

Чем вата ниже,

Тем дождик ближе. (туча)

Цветное коромысло

Над лесом повисло. (радуга)

Летит - молчит,

Лежит - молчит,

Когда умрёт, тогда заревёт. (снег)

Две сестры качались,

Правды добивались.

А когда добились, то остановились. (весы)

Всем поведает хоть без языка

Когда будет ясно, а когда облака. (барометр)

По высокой дороге идёт бычок круторогий. (месяц)

В круглом домике, в окошке

Ходят сёстры по дорожке, Не торопиться меньшая,

Но зато спешит старшая. (часы)

Размещено на Allbest.ru

...

Подобные документы

    Предмет и структура физики. Роль тепловых машин в жизни человека. Основные этапы истории развития физики. Связь современной физики с техникой и другими естественными науками. Основные части теплового двигателя и расчет коэффициента его полезного действия.

    реферат , добавлен 14.01.2010

    Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.

    учебное пособие , добавлен 03.04.2010

    Важная роль физики в техническом развитии оборонной промышленности. Теоретические исследования физиков, начальное развитие новых отраслей науки: теории относительности, атомной квантовой физики. Работы в области радиотехники, военных прикладных отраслей.

    доклад , добавлен 27.02.2011

    Основные закономерности развития физики. Аристотелевская механика. Физические идеи средневековья. Галилей: принципы "земной динамики". Ньютоновская революция. Становление основных отраслей классической физики. Создание общей теории относительности.

    реферат , добавлен 26.10.2007

    Научно-техническая революция (НТР) ХХ века и ее влияние на современный мир. Значение физики и НТР в развитии науки и техники. Открытие и применение ультразвука. Развитие микроэлектроники и применение полупроводников. Роль компьютера в развитии физики.

    презентация , добавлен 04.04.2016

    История биофизики и физики, их значение и роль в теоретическом развитии и методическом вооружении: физиологии, биохимии, цитологии, ветеринарно-санитарной экспертизе, клинической диагностике, ветеринарной хирургии, зооинженерии, экологии и биотехнологии.

    курс лекций , добавлен 01.05.2009

    Научные исследования физических, химических и биологических явлений, проводившиеся в ХХ в. Открытие элементарных частиц и теория расширяющейся Вселенной. Создание и развитие общей теории относительности. Возникновение релятивистской и квантовой физики.

    презентация , добавлен 08.11.2015

    Основные этапы жизни советского физика П. Капицы. Студенческие годы и начало преподавательской работы ученого. Получение Нобелевской премии за фундаментальные изобретения и открытия в области физики низких температур. Роль Капицы в становлении физики.

    презентация , добавлен 05.06.2011

    Предмет физики и ее связь со смежными науками. Общие методы исследования физических явлений. Развитие физики и техники и их взаимное влияния друг на друга. Успехи физики в течение последних десятилетий и характеристика ее современного состояния.

    учебное пособие , добавлен 26.02.2008

    Геометрия и физика в теории многомерных пространств. Абсолютная система измерения физических величин. Бесконечности в теории многомерных пространств. Квантовая теория относительности. Сущность принципа относительности в теории многомерных пространств.

Введение

Предмет физики.


Окружающий нас мир материален. “Материя есть философская категория для обозначения объективной реальности, которая…отображается нашими ощущениями, существуя независимо от них” (В.И.Ленин, ПСС, том 18, с. 131). Неотъемлемым свойством материи и формой ее существования является движение Движение - это всевозможные изменения материи – от простого перемещения до сложнейших процессов мышления.

Физика (от греч. - природа) – наука о наиболее простых, и, вместе с тем, наиболее общих формах движения материи и их взаимных превращениях. Изучаемые физикой формы движения материи (механическая, тепловая и др.) присутствуют во всех высших и более сложных формах движения материи (химических, биологических и др.), и являются предметом изучения этих других наук.
^

Методы физического исследования


Процесс познания в физике начинается с наблюдения явлений в естественных условиях. Умозрительное обобщение результатов наблюдений приводит к выдвижению гипотезы - предположения о закономерностях, которые требуют проверки и доказательства опытным путем, т.е. постановкой эксперимента . В результате - ошибочные гипотезы (например, флогистона, эфира и др.) отбрасываются, а на основе правильных, подтвержденных экспериментами, формируется физическая теория .

Физическая теория дает качественное и количественное объяснение целой области явлений природы с единой точки зрения - вскрывает механизм этих явлений и формулирует их закономерности.

Развитие науки – от опыта к теории, от теории к опыту - этим не ограничивается. Обнаруживаются новые области явлений и факты, объяснение которых не укладывается в рамки существующей теории и требует выдвижения новых гипотез. Новые открытия ведут к исправлению или дополнению теорий, созданию новых, более глубоко и точно отражающих объективные закономерности природы.

Новая теория не всегда отрицает старую, чаще всего включает ее в себя как часть, частный случай, т.е. является более широкой и всеохватывающей (например, классическая механика стала составной частью релятивистской механики). Таким образом, по непрерывно восходящей спирали идет развитие науки.
^

Роль физики в развитии техники

Физика является фундаментом развития техники. Примером этого может служить создание новых современных отраслей техники. Ядерная энергетика выросла из физики атомного ядра, - электроника - из физики твердого тела, лазерная техника – из оптики и теории электромагнитного излучения.

Связь с техникой носит двусторонний характер. Развитие техники дает новые, более совершенные, более точные приборы и методы исследования, позволяющие проникнуть вглубь строения вещества. Например ускорители частиц дали возможность открытия и изучения новых элементарных частиц, создания искусственных химических элементов.
Связь физики с другими науками.

Физика тесно связана с другими естественными науками. Эта связь привела к тому, что физика тесно переплелась с другими науками как астрономия, геология, химия, биология, химфизика и др.

Физика тесно связана с философией. В основе научного познания мира лежит метод диалектического материализма. Диалектика - это наука о всеобщих законах движения, изменения, обновления и развития материи в наиболее далеком от односторонности виде.

Такие крупные открытия в области физики, как закон сохранения и превращения энергии, соотношение неопределенностей и др. являются ареной борьбы между материализмом и идеализмом.

^

Физические основы механики


Простейшей формой движения материи является механическая – изменение взаимного положения тел в пространстве с течением времени. Исторические приоритеты в развитии механики обусловили потребности военного дела и техники еще в древнейшие времена. Развитие механики начинается со времен Архимеда (III век до н.э.), когда он сформулировал закон равновесия рычага и закон равновесия плавающих тел. Основные законы механики установлены Галилеем (XYI век) и окончательно сформулированы Ньютоном (XYII век). В настоящее время механика подразделяется на 3 отдельные части:


  1. Классическая механика Галилея- Ньютона;

  2. Релятивистская механика, основанная на специальной теории относительности;

  3. Квантовая механика.
Классическая механика делится на 3 раздела: кинематику, динамику и статику.

Кинематика изучает движение тел, не рассматривая причин, которые вызвали это движение.

Динамика изучает законы движения тел во взаимосвязи с причинами, которые вызывают или изменяют движение.

^ Статика изучает законы равновесия этих сил.
1. Модели в механике. Система отсчета. Кинематические

характеристики движения.

В физических исследованиях часто используют научную абстракцию. При изучении движения или свойств тел не принимают во внимание несущественные для данной задачи характеристики тела, например, его размеры, строение, внутреннее состояние и т.п. Простейшим примером научной абстракции или физической моделью является понятие материальной точки.

^ Материальная точка - это тело, размерами которого можно пренебречь (они пренебрежимо малы по сравнению с масштабами движения и расстояниями) в данной задаче. Например, рассматривая движение Земли в Солнечной системе, молекулы в сосуде, их можно считать материальными точками.

^ Система материальных точек. Всякое тело можно мысленно разделить на такие части, каждую из которых можно рассматривать как материальную точку в данном масштабе движения, Тогда изучение движения тела или системы тел сводится к изучению движения системы материальных точек.

^ Абсолютно твердое тело – тело, которое ни при каких условиях в данной задаче не может деформироваться и расстояние между двумя частицами этого тела остается постоянным.

Изучение механического движения начнем с простейшего - поступательного.

^ Поступательное движение – это движение, при котором любая прямая, жестко связанная с движущимся телом, остается параллельной своему первоначальному положению. Движение в механике рассматривается как перемещение материальных точек (или просто точек) или их систем в пространстве и во времени.

Положение материальной точки определяется по отношению к телу отсчета, считаемому неподвижным. Связанная с ним система координат и часов называется системой отсчета. Положение точки А в декартовой системе координат в данный момент времени определяется координатами x, y, z или радиусом –вектором r (рис.1).
При движении материальной точки координаты с течением времени изменяются, т.е. являются функциямивремени. Скалярные уравнения: x = x(t);

y = y(t); z = z(t) (1.1) в общем случае являются кинематическими уравнениями движения точки. Система уравнений (1.1) эквивалентна векторному уравнению r = r (t) .

Положение точки в пространстве можно описать с помощью полярных координат r,Θ,φ (рис.1).


Рис.1
^ Числом степеней свободы материальной точки называют число независимых координат, которые полностью определяют ее положение в пространстве. Если точка движется в пространстве, то ее положение определяется тремя координатами x, y, z и она обладает тремя степенями свободы. При движении по плоскости у точки две степени свободы, а при движении по прямой точка обладает только одной степенью

свободы.

^ Траекторией движения называют линию, описываемую движущейся точкой. Пусть материальная точка перемещается

по кривой из положения А в положение В

(рис. 2). Тогда дуга АˇВ будет траекторией, а длина этой дуги ∆s будет длиной пути . Длина пути ∆s представляет собой скалярную функцию времени ∆s= ∆s (t). Начальное положение материальной точки задается радиусом-вектором r 0, а конечное - радиусом-вектором r . Вектор Δr = r r 0 (приращение радиуса-вектора за рассматриваемый промежуток времени) называется перемещением . При прямолинейном перемещении | Δr | = ∆s.

Скорость
Быстрота и направление движения точки характеризуется скоростью . Скорость векторная величина. Пусть точка перемещается из положения А в положение В (рис.3). В момент времени t положение материальной точки характеризует радиус-вектор r 0 . За малый промежуток времени Δt точка прошла путь Δs до положения В и совершила элементарное перемещение Δr. Вектором средней скорости называют отношение

v › = Δr /Δt [м/c]

Направление ‹v › совпадает с направлением Δr.

Мгновенной скоростью v называют предел отношения приращения радиуса-вектора точки Δr к промежутку времени Δt, стремящемуся к нулю

v = lim Δr /Δt = dr/ dt ,

т.е. v есть первая производная радиуса-вектора по времени. В пределе при Δt→0, секущая АВ совпадает с касательной и, следовательно, мгновенная скорость v направлена по касательной в каждой точке траектории.

По мере уменьшения Δt путь ∆s будет приближаться к значению модуля перемещения |Δr |, поэтому модуль мгновенной скорости будет равен


Из полученного выражения видно, что ds = dt. Путь s, пройденный за время Δt, найдем, интегрируя выражение ds = v dt в пределах от t до t+ Δt

s =

В случае равномерного движения (v = const) s = vt. В самом общем случае, когда скорость является функцией времени v = v(t), путь, пройденный за время Δt = t 2 –t 1, определяется интегралом


.
Ускорение

Физическая величина, характеризующая быстроту изменения скорости по величине и по направлению, называется ускорением. Пусть материальная точка, двигаясь по криволинейной траектории, за время

Δt переместилась из положения А в положение В. При этом скорость точки изменилась от v до v 1.

v 1 = v + Δv

Изменение скорости Δv надем, если перенесем вектор v 1 из точки В в точку А (на рис.4 вектор АЕ ).

Особая роль физики в развитии общества. В настоящее время динамично развивается научно-технический прогресс. Произошли глубокие, качественные изменения во многих областях науки и техники. Появление НТП связанно с великими открытиями в области фундаментальной физики. Открытие радиоактивности, электромагнитных волн, ультразвука, реактивного движения и т.д. привело к тому, что человек применяя эти знания, двинул далеко вперед развитие техники.

Человек научился передавать на расстоянии не только звук, но и изображение. Человек вышел в космос высадился на луну, увидел ее обратную сторону. С помощью уникальных оптических приборов возможно узнать из какого вещества состоят далекие планеты. Полученные новые данные когда-нибудь позволят человеку сделать новые невероятные открытия, которые приведут к новым достижениям в науки и технике.

Во всем мире наблюдаются глубокие качественные перемены в основных отраслях техники. НТП коренным образом изменил роль науки в жизни общества. Наука стала непосредственной производительной силой. Прикладная электроника бывшая до недавнего времени частью общей физики стала независимой областью науки, так же как и физическая химия, геофизика и астрофизика отделились от общей физики. Основные достижения в последние годы были получены на стыке разных наук - в биофизике, физике твердых тел и астрофизике.

Расшифровка структур ДНК, синтез сложных протеиновых молекул и достижения генной инженерии были осуществлены благодаря достижениям спектроскопии, рентгеновской кристаллографии и электронному микроскопу. Все большее значение приобретает ультразвук в научных изысканиях и практических применениях. Формируется новое направление химии - ультразвуковая химия. Возникли новые области применения ультразвука микроскопия, голография, квантовая акустика и т.д. Ультразвук помогает морякам обнаруживать различные подводные объекты, медикам проводить диагностику заболеваний.

Ультразвук строит и разрушает, режет и сверлит, штампует и паяет, очищает, сортирует, стерилизует, разведывает. Его взяли на вооружение геологоразведчики и нефтяники. И это еще не все, перечень применения ультразвука можно продолжить. Изобретение транзистора привело к настоящей революции в области радиоэлектроники. На основе транзисторной технологии появилось новое направление в науке и технике - микроэлектроника. Что позволило человеку построить первые полупроводниковые ЭВМ. Физика вносит решающий вклад в создание современной вычислительной техники, представляющей собой материальную основу информатики.

За короткий промежуток времени вычислительная техника шагнула далеко в перед. Современные персональные компьютеры имеют огромную скорость обработки информации, большие объемы памяти, позволяющие осуществлять практически любые расчеты. С помощью периферийных устройств компьютер видит, слышит, рисует, чертит, печатает, говорит, показывает, играет в игры, обучает, управляет технологическими процессами на производстве, следит за космическим полетом и т.д. Трудно представить себе сегодняшний день без компьютера.

С помощью компьютера в наши дни осуществляется связь по компьютерной сети с любой точки земного шара. Таким образом, идет обмен видео, аудио и текстовой информации между людьми в разных странах. Это позволяет людям понять друг друга лучше, узнать много нового друг о друге, получить требуемую информацию.

Электронная почта в считанные секунды доставит ваше сообщение огромного объема в любой уголок земли. Развитие компьютерной техники и технологии, дают возможность ученым физикам производить сложнейшие расчеты, анализировать вероятностные ситуации, строить математические модели различных процессов. Т.е. развитие самой физики не возможно без участия ее собственного детища. Точно такие же примеры можно привести относительно любого раздела физики.

Любое открытие новых физических законов немедленно приводит к использованию их в развитии других наук и техники. А это в свою очередь приводит к новым открытиям в фундаментальной физики. Таким образом, научно технический прогресс не возможно остановить. Развитие физики принесло не только фундаментальные изменения в представлении о материальном мире, но и с применением современных технологий, основанных на лабораторных открытиях, происходят прогрессивные изменения в обществе.

Благодаря развитию науки техники люди на планете Земля стали ближе - пребывая в едином информационном пространстве. Теперь уже не кажется, что земля бесконечно велика и на ее поверхности и в ее недрах можно делать что угодно. Необдуманные действия человека, вооруженного достижениями той же самой науки и техники, приводят к необратимым и часто разрушительным последствиям для природы и самого человека. Сегодня прогресс достиг небывалых темпов роста и продолжает динамично развиваться.

Современный мир сложен, многообразен, динамичен, пронизан противоборствующими тенденциями. Он противоречив, но взаимозависим, во многом целостен. Если двадцатый век называли веком науки и техники, то нынешний век будет веком информационным. Главной ценностью становится информация. Еще в XIX в. появились первые признаки того, что наука стала мировой, объединив усилия ученых разных стран. Возникла, развилась в дальнейшем интернационализация научных связей.

Расширение сферы применения науки в конце XIX - начале XX в. привело к переменам в жизни десятков миллионов людей, проживающих в развитых промышленных странах, и объединению их в новую экономическую систему. Возрастание роли техники и технического знания в жизни общества характеризуется зависимостью науки от научно-технических разработок, усиливающейся технической оснащенностью, созданием новых методов и подходов, основанных на техническом способе решения проблем в разных областях знания, в том числе, и военно-техническом знании.

Современное понимание технического знания и технической деятельности связывается с традиционным кругом проблем и с новыми направлениями в технике и инженерии, в частности с техникой сложных вычислительных систем, системотехникой и др. Научно-технический прогресс выдвинул на передний план проблему применения техники нового типа. Подобная техника - электронно-вычислительные машины ЭВМ, автоматизированные системы управления АСУ - в наше время проникла в самые разнообразные области общественной жизнедеятельности и науки.

От эффекта ее практического применения стали непосредственно зависеть успехи в развитии этих важнейших областей. Следует отметить, что развитие техники происходило не только по пути ее усложнения, но также и в направлении повышения ее качества и надежности. Компьютеризация может привести не только к позитивным, прогрессивным изменениям в жизни человека, но и спровоцировать негативные изменения, например, такие как уменьшение интеллектуальной активности человека, снижению творческой активности. Таким образом, сейчас приходится сталкиваться с положительными и отрицательными последствиями применения научных достижений.

История науки знает немало выдающихся исследователей отдельных областей знаний, но значительно более редко встречались учные, которые своей мыслью охватывали все знания о природе своей эпохи и пытались дать им синтез. Таковы были во второй половине XV века и в начале XVI в. Леонардо да Винчи, в XVIII столетии М.В. Ломоносов 1711-1765 и его французский современник Ж.Л. Бюффон 1707-1788. А также наш крупнейший естествоиспытатель Владимир Иванович Вернадский 1863-1945 по строю мыслей и широте охвата природных явлений он стоит в одном ряду с этими великими учными.

В.И. Вернадский работал на столетие позже А. Гумбольдта, когда объм точных сведений во всех областях естествознания неизмеримо возрос, стали совершенно другими техника и методика исследований, а многие научные направления появились впервые, в значительной мере по инициативе, или при активном участии В.И Вернадского.

Учный был исключительно эрудированным, он свободно владел многими языками, следил за мировой научной литературой, переписывался с крупнейшими зарубежными деятелями культуры. Это позволяло ему всегда быть в курсе событий в научном мире, а в своих выводах и обобщениях заглядывать далеко вперд. Ещ в 1910 году в записке О необходимости исследования радиоактивных минералов Российской империи В.И. Вернадский предсказал неизбежность практического использования ядерной энергии.

Правда, никто не обратил тогда внимания на его слова. Вернадский также создал учение о ноосфере мыслящей оболочке Земли. Об обществе двадцатого века учный писал Такой совокупности общечеловеческих действий и идей никогда раньше не бывало, и ясно, что остановлено это движение не может. В частности, перед учеными стоят для ближайшего будущего небывалые для них задачи сознательного направления организованности ноосферы, отойти от которой они не могут, так как к этому направляет их стихийный ход роста научного знания.

Одной из важнейших проблем формирования организованности ноосферы является вопрос о месте и роли науки в жизни общества, о влиянии государства на развитие научных исследований. Вернадский высказывался за образование единой на государственном уровне научной человеческой мысли, которая являлась бы решающим фактором в ноосфере и создавало бы для ближайших поколений лучшие условия жизни.

Первоочередные вопросы, которые необходимо решить на этом пути, это вопрос о плановой, единообразной деятельности для овладения природой и правильного распределения богатств, связанный с сознанием единства и равенства всех людей, единства ноосферы идея о государственном объединении усилий человечества. Поражает созвучность идей Вернадского нашему времени. Постановка задач сознательного регулирования процесса созидания ноосферы чрезвычайно актуальна для сегодняшнего дня. К этим задачам Вернадский также относил искоренение войн из жизни человечества.

Он большое внимание уделял решению задач демократических форм организации научной работы, образования, распространения знаний среди народных масс. В 1922 г. учный снова вернулся к этой теме. Ещ тогда он предупреждал Недалеко время, когда человек получит в свои руки атомную энергию, такой источник силы, который даст ему возможность строить свою жизнь, как он хочетСумеет ли человек воспользоваться этой силой, направлять е на добро, а не на самоуничтожение Немецкий философ Альберт Швейцер в своей Нобелевской речи Осло 1952 очень чтко охарактеризовал состояние человечества на данный момент Человек превратился в сверхчеловека Но человек, наделнный сверхчеловеческой силой, ещ не поднялся до уровня сверхчеловеческого разума Наша совесть должна пробудиться от сознания того, что чем больше мы превращаемся в сверхлюдей, тем бесчеловечнее мы становимся. Альберт Швейцер считал, что люди смогут достигнуть понимания только тогда, когда в государстве будет господствовать новая мораль.

Б.Рассел и А.Эйнштейн призывали людей научиться мыслить по-новому, так, чтоб разногласия решались не с помощью оружия.

Дальнейшая судьба человечества зависит от того, как будут решаться глобальные проблемы. В современном мире жить, отгородившись от всего, уже невозможно. Нельзя делать это в местном масштабе. Одно развитие техники не решит всех проблем, необходима ещ и социальная перестройка. Итак, научно-технические достижения идут не только на благо людям, иногда они приносят вред и создают новые проблемы.

Но жизнь современного человека невозможна без науки. Наверное, люди не в силах остановить прогресс, даже если очень этого захотят. Необходимо использовать достижения во имя мира и взаимного уважения всех людей. Развитие науки не должно становиться из средства целью. Андре Мишель Львов1902 французский генетик и вирусолог, иностранный член Академии Наук РФ, лауреат нобелевской премии в интервью, данном в 1991издательству Москва, говорит том, как наука влияет на жизнь общества Наука, и е применение радикально меняют судьбы и людей и структуру общества.

В развитом обществе доля времени, которую люди тратят на удовлетворение материальных потребностей, значительно уменьшилось и продолжает уменьшаться. Человек может больше времени уделять собственным интересам. Наука не является чем-то постоянным и неизменным, е развитие приводит к постоянному изменению концепций. Все утверждения в науке ежедневно подвергаются строгой критике.

Андре Львов считает, что наука, как и искусство должна развиваться свободно, любое вмешательство в не некомпетентных лиц сказывается не только на е качестве пример запрет генетики в СССР, но и на жизни всего общества применение научных достижений во вред. Чтобы выжить, человечество должно выработать свое новое политическое мышление, новый взгляд на отношения человека с человеком, государства с государством. В связи с этим открываются новые возможности расширения диалога, сотрудничества и взаимопонимания о ряду важных вопросов.

Без такого сотрудничества не сохранить мира, не решить глобальных проблем современности. Массовая коммуникация имеет прямое отношение ко всем этим проблемам и сама является одной из важнейших глобальных проблем. О цели и роли науки в жизни общества и о несовершенстве современной организации науки в России. Цель науки - сохранять и преумножать знания для общества и последующих поколений. Знания позволяют человеку, зная природу вещей делать верный выбор из имеющихся вариантов, тем самым делая свою жизнь более богатой во всех смыслах.

В этом суть того, зачем нужны знания. 6.

Конец работы -

Эта тема принадлежит разделу:

Роль науки в жизни общества

Для того, чтобы эти взаимоотношения прояснить, нужно выявить специфические черты науки, прежде всего те, которые отличают ее от остального. Свойства науки образуют шесть диалектических пар, соотносящихся друг с другом… Всем этим и определяется специфика научного исследования и значения науки. Наука отличается от обыденного сознания…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях: