Абсолютный ноль: история открытия и основное применение. Абсолютная температурная шкала. Абсолютный нуль

То, что все изобары сходятся в одной точке (рис. 1.9), не случайность, а закономер-ность, имеющая определенный физический смысл. Закон Гей-Люссака не отрицает воз-можности безграничного возрастания темпе-ратуры, ведь объем газа при возрастании температуры может неограниченно увеличи-ваться. Тем не менее при снижении тем-пературы он стремится к нулю и имеет гра-ницу (V = 0 ), поскольку не может быть отри-цательным.

В действительности реальные газы даже не могут достичь этой границы, поскольку их атомы и молекулы, хоть и маленькие по размеру, всё-таки имеют определенный объем.

Если в уравнении (V — V 0) / V 0 = αΔ t, предпо-ложить, что V 0 — это объем газа при t 0 = 0°C, следовательно, Δ t = t — t 0 = t, и приравнять его к нулю как нижней границе объема, то по-лучим значение самой низкой температуры по шкале Цельсия, которую могут иметь тела:

0 = V 0 . (1 + t / 273).

1 + t / 273 = 0, t = -273 °C

Итак, температура может беспредельно по-вышаться, но в природе существует ее нижний предел — абсолютный нуль, ниже которого она не может опускаться. Вот почему изо-бары всех газов сходятся в одной точке на оси температур, которая равна —273°C.

Не все в мире от-носительно; существуют и абсо-лютные значения, в частности абсолютный нуль температур .

Существование абсолютного нуля темпе-ратур было положено английским ученым У. Томсоном (Кельвином ) в основу постро-ения абсолютной шкалы температур , ко-торая не зависит от свойств метрического тела и поэтому может считаться идеальной. Материал с сайта

Уильям Томсон (лорд Кельвин) (1824 — 1907). Английский физик, один из ос-нователей термодинамики и молекулярно-кинетической теории, теории термо-электрических явлений, основ элект-ромагнитных колебаний. Сформулиро-вал второй закон термодинамики, ввел абсолютную шкалу температур (шкала Кельвина), открыл термодинамический эффект, вывел формулу периода соб-ственных электромагнитных колебаний в колебательном контуре, осуществил расчеты размеров молекул и т. д. За выдающиеся научные достижения по-лучил титул лорда Кельвина.

Точкой отсчета шкалы есть абсолютный нуль температуры , точное значение кото-рого равняется -273,15° С. Единицей изме-рения избрана величина, которая в СИ на-зывается кельвином (К); она по размеру равна градусу Цельсия (°С): 1 К = 1 °С. По-этому между абсолютной температурой Т и температурой по шкале Цельсия t суще-ствует простое соотношение (рис. 1.10):

T = t + 273.

Понятие абсолютной температуры широ-ко используют в термодинамике и молеку-лярной физике, поскольку оно имеет глубо-кий физический смысл и упрощает запись многих уравнений.

На этой странице материал по темам:

  • Термодинамическая шкала температур абсолютный нуль конспект

  • Лекция абсолютная шкала температур

  • Термоэлектрическим явлениям и молекулярной физике

  • Температура является количественной мерой «нагретости» тела. Понятие температуры занимает особое место в ряду физических величин, определяющих состояние системы. Температура не только характеризует состояние теплового равновесия данного тела. Она является также тем параметром, который принимает одинаковое значение для любых двух или большего числа тел, находящихся в тепловом равновесии друг с другом, т.е. характеризует тепловое равновесие системы тел. Это значит, что если два или несколько тел, имеющих разные температуры, привести в контакт, то в результате взаимодействия между молекулами эти тела примут одинаковое значение температуры.

    Молекулярно-кинетическая теория позволяет выяснить физический смысл температуры. Сравнивая выражения (2.4) и (2.7), видим, что они совпадают, если положить

    (2.9)

    Эти соотношения называют вторыми основными уравнениями молекулярно-кинетической теории газов. Они показывают, что абсолютная температура есть величина, определяющая среднюю кинетическую энергию поступательного движения молекул; она является мерой энергии поступательного движения молекул, а тем самым и интенсивности теплового движения молекул. В этом состоит молекулярно-кинетический смысл абсолютной температуры. Как видим, процесс нагревания тела непосредственно связан с увеличением средней кинетической энергии частиц тела. Из (2.9) видно, что абсолютная температура – величина положительная: Значение называется абсолютным нулем температуры. Согласно (2.8) при абсолютном нуле должно полностью прекращаться поступательное движение частиц (). Следует, однако, отметить, что при низких температурах газ переходит в конденсированное состояние. Следовательно, теряют смысл и все выводы, сделанные на основе кинетической теории газов. И при абсолютном нуле температуры движение не исчезает. Движение электронов в атомах, движение свободных электронов в металлах полностью сохраняются и при температуре абсолютного нуля. Кроме того, даже при абсолютном нуле сохраняется некоторое колебательное движение атомов внутри молекул и атомов в узлах кристаллической решетки. Существование этих колебаний связано с наличием нулевой энергии у квантового гармонического осциллятора (), в качестве которого можно рассматривать указанные выше колебания атомов. Эта энергия не зависит от температуры, а значит, не обращается в нуль и при . При низких температурах классические представления о движении перестают выполняться. В этой области действуют квантовые законы, в соответствии с которыми движение частиц не прекращается, даже если понизить температуру тела до абсолютного нуля. Но скорость этого движения уже не зависит от температуры и это движение не является тепловым. Это подтверждается и принципом неопределенности. Если бы частицы тела покоились, то их положения (координаты x , y , z) и импульсы (проекции импульса p x , p y , p z ) были бы точно определены и т.д., а это противоречит соотношениям неопределенностей и т.д. Абсолютный нуль не достижим. Ниже будет показано, что абсолютный нуль температуры означает такое состояние системы, при котором система находится в состоянии с наименьшей энергией, и поэтому дальнейшее уменьшение интенсивности движения ее частиц за счет отдачи его энергии окружающим телам не возможно.

    Формулу (2.7) можно записать в виде.

    Эта формула может служить определением понятия абсолютной температуры для одноатомного газа. Температуру любой другой системы можно определить как величину, равную температуре одноатомного газа, находящегося в тепловом равновесии с этой системой. Определение температуры с помощью этой формулы верно вплоть до температур, при которых уже нельзя пренебречь вероятностью возникновения электронно-возбужденных состояний атомов газа.

    Соотношение (2.8) позволяет ввести так называемую среднюю квадратичную скорость молекулы , определив ее как

    Тогда получим

    Понятие абсолютной температуры можно более строго ввести в статистической физике, где ее можно рассматривать как модуль статистического распределения частиц по энергиям. Отметим также, что поскольку температура, так же как и давление, как видно из формул (2.7) и (2.8), определяется средней кинетической энергией молекулы идеального газа, то тони представляют собой статистические величины и, следовательно, бессмысленно говорить о температуре или давлении одной или небольшого числа молекул.

    Выбор в качестве основных точек температурной шкалы точек таяния льда и кипения воды совершенно произволен. Полученная таким образом температурная шкала оказалась неудобной для теоретических исследований.

    Опираясь на законы термодинамики, Кельвину удалось построить так называемую абсолютную температурную шкалу (ее в настоящее время называют термодинамической шкалой температур или шкалой Кельвина), совершенно не зависящую ни от природы термометрического тела, ни от избранного термометрического параметра. Однако принцип построения такой шкалы выходит за пределы школьной программы. Мы рассмотрим этот вопрос, используя другие соображения.

    Из формулы (2) вытекают два возможных способа установления температурной шкалы: использование изменения давления определенного количества газа при постоянном объеме или изменение объема при постоянном давлении. Такую шкалу называют идеальной газовой шкалой температуры .

    Температура, определяемая равенством (2), называется абсолютной температурой . Абсолютная температура? не может быть отрицательной, так как слева в равенстве (2) стоят заведомо положительные величины (точнее, она не может быть разных знаков, она может быть либо положительной, либо отрицательной. Это зависит от выбора знака постоянной k. Так как условились температуру тройной точки считать положительной, то абсолютная температура может быть только положительной). Следовательно, наименьшее возможное значение температуры Т = 0 есть температура, когда давление или объем равны нулю.

    Предельная температура, при которой давление идеального газа обращается в нуль при фиксированном объеме или объем идеального газа стремится к нулю (т.е. газ как бы должен сжаться в "точку") при неизменном давлении, называется абсолютным нулем . Это самая низкая температура в природе.

    Из равенства (3), учитывая, что

    вытекает физический смысл абсолютного нуля: абсолютный нуль - температура, при которой должно прекратиться тепловое поступательное движение молекул. Абсолютный нуль недостижим.

    В Международной системе единиц (СИ) используют абсолютную термодинамическую шкалу температур. За нулевую температуру по этой шкале принят абсолютный нуль. В качестве второй опорной точки принята температура, при которой находятся в динамическом равновесии вода, лед и насыщенный пар, так называемая тройная точка (по шкале Цельсия температура тройной точки равна 0,01 °С). Каждая единица абсолютной температуры, называемая Кельвином (обозначается 1 К), равна градусу Цельсия.

    = .

    Любое измерение предполагает наличие точки отсчета. Не является исключением и температура. Для шкалы Фаренгейта такой нулевой отметкой является температура снега, смешанного с поваренной солью, для шкалы Цельсия – температура замерзания воды. Но есть особая точка отсчета температуры – абсолютный нуль.

    Абсолютный температурный нуль соответствует 273,15 градусам Цельсия ниже нуля, 459,67 ниже нуля по Фаренгейту. Для температурной шкалы Кельвина такая температура сама по себе является нулевой отметкой.

    Сущность абсолютного нуля температуры

    Понятие абсолютного нуля исходит из самой сущности температуры. Любое тело обладает энергией, которую отдает во внешнюю среду в ходе теплопередачи. При этом снижается температура тела, т.е. энергии остается меньше. Теоретически этот процесс может продолжаться до тех пор, пока количество энергии не достигнет такого минимума, при котором отдавать ее тело уже не сможет.
    Отдаленное предвестие такой идеи можно найти уже у М.В.Ломоносова. Великий русский ученый объяснял теплоту «коловратным» движением. Следовательно, предельная степень охлаждения – это полная остановка такого движения.

    По современным представлениям, абсолютный нуль температуры – это такое состояние вещества, при котором молекулы наименьшим возможным уровнем энергии. При меньшем количестве энергии, т.е. при более низкой температуре ни одно физическое тело существовать не может.

    Теория и практика

    Абсолютный нуль температуры – понятие теоретическое, достичь его на практике невозможно в принципе, даже в условиях научных лабораторий с самой сложной аппаратурой. Но ученым удается охлаждать вещество до очень низких температур, которые близки к абсолютному нулю.

    При таких температурах вещества приобретают удивительные свойства, которых они не могут иметь при обычных обстоятельствах. Ртуть, которую называют «живым серебром» из-за ее пребывания в состоянии, близком к жидкому, при такой температуре становится твердой – до такой степени, что ею можно забивать гвозди. Некоторые металлы становятся хрупкими, как стекло. Такой же твердой и хрупкой становится резина. Если при температуре, близкой к абсолютному нулю, ударить молотком какой-нибудь резиновый предмет, он разобьется, как стеклянный.

    Такое изменение свойств тоже связано с природой теплоты. Чем выше температура физического тела, тем интенсивнее и хаотичнее двигаются молекулы. По мере снижения температуры движение становится менее интенсивным, а структура – более упорядоченной. Так газ становится жидкостью, а жидкость твердым телом. Предельный уровень упорядоченности – кристаллическая структура. При сверхнизких температурах ее приобретают даже такие вещества, которые в обычном состоянии остаются аморфными, например, резина.

    Интересные явления происходят и с металлами. Атомы кристаллической решетки колеблются с меньше амплитудой, рассеяние электронов уменьшается, поэтому падает электрическое сопротивление. Металл приобретает сверхпроводимость, практическое применение которой представляется весьма заманчивым, хотя и труднодостижимым.

    Предельную температуру, при которой объем идеального газа становится равным нулю, принимают за абсолютный нуль температуры. Однако объем реальных газов при абсолютном нуле температуры обращаться в нуль не может. Имеет ли смысл тогда это предельное значение температуры?

    Предельная температура, существование которой вытекает из закона Гей-Люссака, имеет смысл, так как практически можно приблизить свойства реального газа к свойствам идеального. Для этого надо брать все более разреженный газ, так чтобы его плотность стремилась к нулю. У такого газа действительно объем с понижением температуры будет стремиться к предельному, близкому к нулю.

    Найдем значение абсолютного нуля по шкале Цельсия. Приравнивая объем V в формуле (3.6.4) нулю и учитывая, что

    Отсюда абсолютный нуль температуры равен

    * Более точное значение абсолютного нуля: -273,15 °С.

    Это предельная, самая низкая температура в природе, та «наибольшая или последняя степень холода», существование которой предсказал Ломоносов.

    Шкала Кельвина

    Кельвин Уильям (Томсон У.) (1824- 1907) - выдающийся английский физик, один из основателей термодинамики и молекулярно-кинетической теории газов.

    Кельвин ввел абсолютную шкалу температур и дал одну из формулировок второго начала термодинамики в форме невозможности полного превращения теплоты в работу. Он произвел расчет размеров молекул на основе измерения поверхностной энергии жидкости. В связи с прокладкой трансатлантического телеграфного кабеля Кельвин разработал теорию электромагнитных колебаний и вывел формулу для периода свободных колебаний в контуре. За научные заслуги У. Томсон получил титул лорда Кельвина.

    Английский ученый У. Кельвин ввел абсолютную шкалу температур. Нулевая температура по шкале Кельвина соответствует абсолютному нулю, и единица температуры по этой шкале равна градусу по шкале Цельсия, поэтому абсолютная температура Т связана с температурой по шкале Цельсия формулой

    (3.7.6)

    На рисунке 3.11 для сравнения изображены абсолютная шкала и шкала Цельсия.

    Единица абсолютной температуры в СИ называется кельвином (сокращенно К). Следовательно, один градус по шкале Цельсия равен одному градусу по шкале Кельвина: 1 °С = 1 К.

    Таким образом, абсолютная температура по определению, даваемому формулой (3.7.6), является производной величиной, зависящей от температуры Цельсия и от экспериментально определяемого значения а. Однако она имеет фундаментальное значение.

    С точки зрения молекулярно-кинетической теории абсолютная температура связана со средней кинетической энергией хаотического движения атомов или молекул. При Т = О К тепловое движение молекул прекращается. Подробнее об этом пойдет речь в главе 4.

    Зависимость объема от абсолютной температуры

    Применяя шкалу Кельвина, закон Гей-Люссака (3.6.4) можно записать в более простой форме. Так как

    (3.7.7)

    Объем газа данной массы при постоянном давлении прямо пропорционален абсолютной температуре.

    Отсюда следует, что отношение объемов газа одной и той же массы в различных состояниях при одном и том же давлении равно отношению абсолютных температур:

    (3.7.8)

    Существует минимально возможная температура, при которой объем (и давление) идеального газа обращаются в нуль. Это абсолютный нуль температуры: -273 °С. Удобно отсчитывать температуру от абсолютного нуля. Так строится абсолютная шкала температур.