Строение земной атмосферы таблица. Презентация на тему: Атмосфера Земли: ее состав и строение

Для изучения физического состояния атмосферы произво­дятся как инструментальные, так и визуальные наблюдения. Инструментальные наблюдения осуществляются с помощью специальных приборов, устанавливаемых у поверхности земли на метеорологических станциях, и приборов, поднимаемых на резиновых шарах, самолетах, аэростатах и воздушных змеях. При инструментальных наблюдениях получают сведения о тем­пературе, влажности, давлении воздуха, скорости и направле­нии ветра у поверхности земли и на высотах до 30-40 км. Кроме того, с их помощью определяется высота нижней и верхней границ облаков, количество осадков, состав воздуха, распределение лучистой энергии и т. п.
Визуальные наблюдения ведутся на метеорологических станциях (рис. 3). В процессе этих наблюдений определяют форму и количество облаков (т. е. степень покрытия неба), дальность горизонтальной видимости (степень прозрачности воздуха), характер выпадающих атмосферных осадков, интен­сивность метелей и пр.

Существуют и косвенные методы изучения строения атмо­сферы. Косвенные методы применяются главным образом для получения сведений о высоких слоях атмосферы, которые пока малодоступны для зондирования. К косвенным методам отно­сятся наблюдения за световыми явлениями в атмосфере, рас­пространением звуковых волн и радиоволн. Такие световые явления, как полярные сияния, светимость ночного неба, след метеоров, яркость сумеречного неба и др., позволяют судить о плотности и температуре воздуха, скорости и направлении воздушных потоков.
Из косвенных способов изучения атмосферы можно также отметить следующие:
по перламутровым облакам определяется ветер и влаж­ность воздуха на высотах 22-26 км, по серебристым обла­кам - воздушные течения на высотах 80-90 км;
по аномальному распространению звука устанавливается температура, давление, ветер; те же элементы определяются по метеорным следам на высотах 50-150 км;
по ультрафиолетовой радиации определяется содержание озона, по излучению ночного неба - состав и температура воздуха на высотах 60-70 км, по полярным сияниям - на вы­сотах 80-1000 км.
Метеорологическими и геофизическими ракетами определяется давление, плотность и температура воздуха, а также солнечный спектр и др.
Наиболее распространенным радиометеорологическим при­бором является радиозонд - изобретение П. А. Молчанова (рис. 4). Выпускаемый на резиновом шаре в свободную атмосферу, радиозонд в полете регистрирует давление, температуру и влажность воздуха, а результаты измерений по радио пере­дает условными сигналами. Сигналы улавливаются радио­приемниками и расшифровываются наблюдателями. После быстро произведенной обработки получают значения метеоро­логических элементов на раз­личных высотах.


Сведения о направлении и скорости воздушных течений на высотах получают с по­мощью шаров-пилотов и ра­диопилотов. Шары-пилоты - это небольшие резиновые ша­ры, наполненные водородом. После выпуска их в свободный полет за ними наблюдают в аэро­логический теодолит. По отсчетам величин углов вычисляется направление и скорость ветра на различных высотах. В отличие от шаропилотных наблюдений, производящихся при ясной погоде, радиопилотные наблюдения с помощью радиолокатора или радиопеленгатора позволяют определять направление и скорость ветра и при облачной погоде.
Высота нижней границы облаков измеряется с помощью шаров-пилотов и прожекторов. Для этой же цели используются самолеты, предназначенные для зондирования атмосферы, и облакомеры, поднимаемые на резиновых шарах.
В последние годы для изучения микроструктуры облаков и других целей оборудуются специальные самолеты-лабора­тории.
Почти все перечисленные средства наблюдений за физиче­ским состоянием свободной атмосферы созданы в текущем сто­летии, главным образом за последние 20-25 лет.
Изучением физических процессов и явлений, происходящих в свободной атмосфере, занимается аэрология, представляю­щая собой раздел метеорологии.
Первые сведения о строении атмосферы были получены с помощью аэростатов. В России первое научное применение аэростата было осуществлено академиком Я. Д. Захаровым в 1804 г. В последующем полеты совершали известные ученые Д. И. Менделеев, М. А. Рыкачев и др. В частности, полет Д. И. Менделеева был произведен 7 (19) августа 1877 г. из го­рода Клина.
В нашей стране первый полет стратостата был совершен в 1933 г. Стратостат «СССР-1» поднялся на рекордную для того времени высоту 19 км (рис. 5). Другой советский страто­стат «Осоавиахим-1» в 1934 г. достиг высоты 22 км. Наблю­дения, произведенные при полете, дали много ценных сведений о строении и составе воздуха в нижних слоях стратосферы. Полеты стратостатов в те годы были совершены и в США.

Стратостат “СССР-1”

Новые интересные данные об особенностях строения высо­ких слоев атмосферы, как уже говорилось, были получены в конце 40-х и в 50-х годах с помощью специальных метеоро­логических и геофизических ракет, искусственных спутников Земли и косвенных методов исследования атмосферы. Осо­бенно много запусков осуществлено в период МГГ, МГС и позднее, т. е. начиная с 1957 г.
Многочисленные запуски ракет как в СССР, так и за рубе­жом производились в самых различных пунктах северного и южного полушарий. В результате впервые были получены ценные сведения о высоких слоях атмосферы над Арктикой и Антарктикой, Европой и Азией, Америкой и Австралией, над океанами. Особенно интересны данные, полученные в Арктике, Антарктике и экваториальной зоне.
Большинство метеорологических ракет запускают на вы­соты 60-100 км. Геофизические ракеты достигают значительно больших высот. Так, например, созданная в СССР ракета с аппаратурой общим весом 2200 кг в мае 1957 г. поднялась на высоту 212 км, а 21 февраля 1958 г. другая советская ракета с научной аппаратурой общим весом 1520 кг достигла высоты 473 км. Находящиеся в ракете приборы обычно возвращаются на Землю.
Регистрация различных метеорологических элементов и явлений происходит как при стремительном подъеме ракеты, так и во время плавного спуска на парашюте отделяющегося от нее контейнера с аппаратурой. Результаты наблюдений передаются на Землю с помощью радиотелеметрической аппа­ратуры. Научные приборы регистрируют температуру, давление и химический состав атмосферы на разных высотах; с их по­мощью производится изучение физических свойств ионосферы, космических лучей, коротковол­новой ультрафиолетовой части солнечного спектра.
С запуском в высокие слои атмосферы первого искусствен­ного спутника Земли наряду с изучением этих слоев началось исследование граничащего с ни­ми космического пространства. Искусственные спутники Зем­ли для изучения атмосферы имеют значительные преимуще­ства по сравнению с метеороло­гическими ракетами. Последние, будучи очень дорогими и слож­ными, позволяют получать све­дения лишь в немногих пунктах их запуска и в короткие про­межутки времени. Между тем для систематического исследова­ния атмосферных процессов необходима широкая сеть стан­ций, одновременно выпускаю­щих ракеты, - подобие суще­ствующей сети аэрологических станций, - что пока трудно осу­ществимо.
Искусственные спутники, не­смотря на трудности запуска их на орбиту, обладают рядом преи­муществ. Представляя собой научную лабораторию, спутник в течение своего многодневного полета регистрирует и передает по радио сведения о составе атмосферы, космическом излу­чении, напряженности магнитного поля Земли, корпускулярном излучении Солнца и т. п. на всем земном шаре на высоте своей орбиты.
Специальные метеорологические спутники Земли произво­дят фотографирование облаков с высоты 300 км и более и тем самым регистрируют характер погоды одновременно над обширными районами Земли. По данным, получаемым с по­мощью искусственных спутников Земли, производится расчет составляющих теплового баланса атмосферы, позволяющий опре­делить распределение температуры и ветра у поверхности земли и на высотах.
Очевидно, что на различные высоты одновременно может быть запущена серия метеорологических искусственных спут­ников, что позволит многократно и на протяжении длительного промежутка времени получать данные об особенностях про­цессов в высоких слоях атмосферы. Правда, для длительного существования искусственного спутника необходимо, чтобы орбита его располагалась выше плотных слоев атмосферы, т. е. выше 200 км.
Искусственные спутники Земли, запускаемые на орбиты ниже 1000 км над земной поверхностью, проходят сквозь верх­ние слои атмосферы. Соприкасаясь с атмосферой и испытывая сопротивление, спутники постепенно теряют свою скорость и переходят на более низкие орбиты. Искусственные спутники Земли, запущенные на орбиты выше 1000 км над земной по­верхностью, могут существовать длительное время.
Первый искусственный спутник Земли был запущен в Со­ветском Союзе 4 октября 1957 г. на высоту – около 900 км, вто­рой - 3 ноября 1957 г. на высоту 1700 км, третий - 15 мая 1958 г. на высоту 1880 км.
Большие перспективы в изучении космического простран­ства открылись в связи с запуском космических кораблей. Первый советский космический корабль-спутник был выведен на орбиту 15 мая 1960 г. Запуск второго космического корабля-спутника был осуществлен 19 августа 1960 г., третьего корабля-спутника- 1 декабря 1960 г.
Для изучения космического пространства производятся запуски космических ракет. Первая космическая ракета весом 1472 кг была запущена в Советском Союзе 2 января 1959 г., вторая - 12 сентября (ее вес 1511 кг), третья - 4 октября того же года (вес 1553 кг).
1961 год ознаменовался новыми успехами в проникновении в глубины атмосферы и космического пространства. 12 фев­раля в Советском Союзе был осуществлен запуск ракеты к планете Венера, а 12 апреля 1961 г. первый космонавт мира Юрий Алексеевич Гагарин совершил полет вокруг Земли на ко­рабле-спутнике «Восток-1». Полет, продолжавшийся 108 мин., вызвал восхищение во всем мире.
12 апреля 1961 г. войдет в историю как первый день эпохи проникновения человека в космос. Исторический подвиг Юрия Гагарина продемонстрировал силу творческого гения совет­ского народа.
Как известно, уже второй космический корабль-спутник весом до 4,6 т благополучно возвратился на Землю. Имелись все условия для полета человека. Но была необходима полная уверенность в безопасности полета и возвращении космонавта на Землю. Лишь после ряда запусков советские ученые послали первого человека в космический полет. Позднее в США были осуществлены полеты человека в ракетах и в спутнике.
Осуществление полетов космических кораблей сопряжено с рядом трудностей. Еще в XVII в. великий Ньютон определил две величины скорости, необходимые для определения силы земного притяжения. Одна из них - первая космическая ско­рость - у поверхности земли равна 8 км/сек. Эта скорость обе­спечивает полет запущенного объекта вокруг Земли в качестве искусственного спутника. Другая величина, называемая второй космической скоростью, равна 11 км/сек. Имея вторую косми­ческую скорость, запущенный объект преодолевает силу зем­ного притяжения и уходит в межпланетное пространство. Такие скорости достигаются с помощью многоступенчатых ракет.
Для благополучного космического полета человека меж­планетные корабли должны быть управляемыми, так как при этом условии можно обеспечить возвращение на Землю. Но это еще не все. Необходимо создать такие условия, чтобы орга­низм человека мог выдержать полет. Человеческий организм легко переносит любые скорости. Мы не чувствуем скорости движения поезда, полета самолета, движения Земли вокруг Солнца (последняя скорость равна примерно 30 км/сек) и т. п. Но организм человека очень чувствителен к изменениям ско­рости, т. е. к ускорению. Одни легко переносят катание на «аме­риканских» горах, а у других самочувствие ухудшается даже при подъеме и спуске в лифте.
Ускорение корабля-спутника огромно. Это приводит к воз­растанию веса космонавта в момент взлета в несколько раз. Поэтому, помимо специальной тренировки организма для по­лета в космос, разработан такой режим подъема, который обеспечивает безопасность космонавта.
А какое влияние на человека оказывает невесомость?
При вертикальном запуске до высоты 100 км человек испы­тывает невесомость в течение примерно 3 мин., при запуске до 200 км - 5-6 мин., а до 500 км - около 10 мин. При орбитальном полете искусственных спутников Земли, как и кос­мических кораблей, невесомость продолжается непрерывно.
Полеты подопытных животных показали, что невесомость не должна заметно влиять на организм. После полета Юрия Гагарина вопрос о действии невесомости на тело человека был выяснен окончательно.
Не прошло и четырех месяцев после первого полета чело­века в космос, как советская наука добилась нового блестя­щего успеха в осуществлении космических полетов.
6 августа 1961 г. в 9 час. советский космический корабль-спутник «Восток-2», пилотируемый Германом Степановичем Титовым, за 25 час. сделал 17 оборотов вокруг Земли и, про­летев свыше 700 000 км, 7 августа в 10 час. 18 мин. призем­лился в заданном районе, вблизи места посадки корабля-спутника «Восток-1» с пилотом-космонавтом Юрием Гагариным.
Полет космического корабля-спутника «Восток-2» происхо­дил по орбите с минимальным удалением корабля от поверх­ности Земли (в перигее) 183 км и максимальным удалением (в апогее) 244 км. Полет доказал возможность длительного пребывания человека в космическом пространстве.
11 августа 1962 г. в СССР на орбиту спутника Земли был выведен космический корабль «Восток-3», пилотировавшийся летчиком-космонавтом Андрияном Григорьевичем Николаевым. На следующий день, 12 августа, на орбиту был выведен ко­рабль «Восток-4» с летчиком-космонавтом Павлом Романовичем Поповичем.
Период обращения обоих кораблей вокруг Земли составлял 88,5 мин. Максимальное удаление кораблей от поверхности Земли (в апогее) достигало 251 и 254 км соответственно, а ми­нимальное (в перигее) - 183 и 180 км.
Первый в мире групповой полет космических кораблей про­исходил в ионосфере (термосфере), о которой наши знания пока весьма ограничены.
Советские корабли-спутники приземлились 15 августа около 10 часов. Программа полетов была выполнена полностью.
Корабль «Восток-3», облетев вокруг Земли более 64 раз, за 95 часов прошел расстояние свыше 2,6 млн. км, а корабль «Во­сток-4» за 71 час облетел Землю более 48 раз, пройдя расстоя­ние около 2 млн. км.
Замечательные полеты советских космонавтов Юрия Гага­рина, Германа Титова, Андрияна Николаева, Павла Поповича, американского космонавта Джона Гленна и др. показали, что в недалеком будущем человек сможет проникнуть в межпланет­ное пространство и осуществить мечты о полете на Луну и пла­неты солнечной системы.

Презентация на тему: Атмосфера Земли: ее состав и строение

























1 из 12

Презентация на тему: Атмосфера Земли: ее состав и строение

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Атмосфера (от греч. atmos - пар и spharia - шар) -воздушная оболочка Земли, вращающаяся вместе с ней. Развитие атмосферы было тесно связано с геологическими и геохимическими процессами, протекающими на нашей планете, а также с деятельностью живых организмов. Атмосфера (от греч. atmos - пар и spharia - шар) -воздушная оболочка Земли, вращающаяся вместе с ней. Развитие атмосферы было тесно связано с геологическими и геохимическими процессами, протекающими на нашей планете, а также с деятельностью живых организмов. Нижняя граница атмосферы совпадает с поверхностью Земли, так как воздух проникает в мельчайшие поры в почве и растворен даже в воде. Верхняя граница на высоте 2000-3000 км постепенно переходит в космическое пространство. Благодаря атмосфере, в которой содержится кислород, возможна жизнь на Земле. Атмосферный кислород используется в процессе дыхания человека, животными, растениями.

№ слайда 3

Описание слайда:

№ слайда 4

Описание слайда:

№ слайда 5

Описание слайда:

Тропосфера - самый нижний слой атмосферы, толщина которого над полюсами составляет 8-10 км, в умеренных широтах - 10-12 км, а над экватором - 16-18 км. Тропосфера - самый нижний слой атмосферы, толщина которого над полюсами составляет 8-10 км, в умеренных широтах - 10-12 км, а над экватором - 16-18 км. Воздух в тропосфере нагревается от земной поверхности, т. е. от суши и воды. Поэтому температура воздуха в этом слое с высотой понижается в среднем на 0,6 °С на каждые 100 м. У верхней границы тропосферы она достигает -55 °С. При этом в районе экватора на верхней границе тропосферы температура воздуха составляет -70 °С, а в районе Северного полюса -65 °С. В тропосфере сосредоточено около 80 % массы атмосферы, находится почти весь водяной пар, возникают грозы, бури, облака и осадки, а также происходит вертикальное (конвекция) и горизонтальное (ветер) перемещение воздуха. Можно сказать, что погода в основном формируется в тропосфере.

№ слайда 6

Описание слайда:

Стратосфера - слой атмосферы, расположенный над тропосферой на высоте от 8 до 50 км. Цвет неба в этом слое кажется фиолетовым, что объясняется разреженностью воздуха, из-за которой солнечные лучи почти не рассеиваются. Стратосфера - слой атмосферы, расположенный над тропосферой на высоте от 8 до 50 км. Цвет неба в этом слое кажется фиолетовым, что объясняется разреженностью воздуха, из-за которой солнечные лучи почти не рассеиваются. В стратосфере сосредоточено 20 % массы атмосферы. Воздух в этом слое разрежен, практически нет водяного пара, а потому почти не образуются облака и осадки. Однако в стратосфере наблюдаются устойчивые воздушные течения, скорость которых достигает 300 км/ч. В этом слое сосредоточен озон (озоновый экран, озоносфера), слой, который поглощает ультрафиолетовые лучи, не пропуская их к Земле и тем самым защищая живые организмы на нашей планете. Благодаря озону температура воздуха на верхней границе стратосферы находится в пределах от -50 до 4-55 °С. Между мезосферой и стратосферой расположена переходная зона - стратопауза.

№ слайда 7

Описание слайда:

Мезосфера - слой атмосферы, расположенный на высоте 50-80 км. Плотность воздуха здесь в 200 раз меньше, чем у поверхности Земли. Цвет неба в мезосфере кажется черным, в течение дня видны звезды. Температура воздуха снижается до -75 (-90)°С. Мезосфера - слой атмосферы, расположенный на высоте 50-80 км. Плотность воздуха здесь в 200 раз меньше, чем у поверхности Земли. Цвет неба в мезосфере кажется черным, в течение дня видны звезды. Температура воздуха снижается до -75 (-90)°С. На высоте 80 км начинается термосфера. Температура воздуха в этом слое резко повышается до высоты 250 м, а потом становится постоянной: на высоте 150 км она достигает 220-240 °С; на высоте 500-600 км превышает 1500 °С.

№ слайда 8

Описание слайда:

В мезосфере и термосфере под действием космических лучей молекулы газов распадаются на заряженные (ионизированные) частицы атомов, поэтому эта часть атмосферы получила название ионосфера - слой очень разреженного воздуха, расположенный на высоте от 50 до 1000 км, состоящий в основном из ионизированных атомов кислорода, молекул окиси азота и свободных электронов В мезосфере и термосфере под действием космических лучей молекулы газов распадаются на заряженные (ионизированные) частицы атомов, поэтому эта часть атмосферы получила название ионосфера - слой очень разреженного воздуха, расположенный на высоте от 50 до 1000 км, состоящий в основном из ионизированных атомов кислорода, молекул окиси азота и свободных электронов В ионосфере возникают полярные сияния - свечение разреженных газов под влиянием электрически заряженных летящих от Солнца частиц - и наблюдаются резкие колебания магнитного поля.

№ слайда 11

Описание слайда:

Атмосфера - это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), озона и других газов, но их содержание ничтожно (табл. 1). Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО2 примерно на 10-12 %. Атмосфера - это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), озона и других газов, но их содержание ничтожно (табл. 1). Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО2 примерно на 10-12 %.

Космонавты, видевшие нашу планету из космоса, говорят, что она окружена тонкой голубой дымкой. Так выглядит атмосфера, рождение которой до сих пор до конца неясно.

Состав атмосферы

Атмосфера (от греческих слов atmos - воздух, sphaira - шар) - газовая оболочка, окружающая Землю и простирающаяся до 1000 километров вверх от земной поверхности. Она удерживается силой притяжения Земли.

Воздух атмосферы - это смесь газов, мельчайших капель воды и кристаллов льда. В нём присутствуют также частицы пыли, сажи и органических веществ. Основные газы атмосферы - азот, кислород и аргон. Они составляют 99,9% массы атмосферного воздуха. Их соотношение у земной поверхности одинаково в разных районах Земли. Это объясняется сильным перемешиванием воздуха.

В атмосфере выделяют несколько слоев. Они различаются многими свойствами, и прежде всего особенностями изменения температуры. Нижние слои атмосферы - тропосфера и стратосфера содержат почти весь воздух Земли. Тропосфера - непосредственно прилегающий к земной поверхности . Её верхняя граница над экватором проходит на высоте 18 километров, а над полюсами - на высоте 8-9 километров. В тропосфере находится более 4/5 всего атмосферного воздуха, содержится почти весь водяной пар. Здесь происходят горизонтальные и вертикальные движения воздуха, формируются облака, приносящие дождь, снег. Температура в тропосфере постепенно понижается снизу вверх и на границе со стратосферой составляет в среднем -55 °С. В тропосфере протекает жизнь человека, растений и животных.

Стратосфера простирается до высоты 50-55 километров. Воздух в ней настолько разрежен, что им нельзя дышать. Видимость в этом слое всегда хорошая, здесь почти нет облаков, не бывает ни гроз, ни дождя, ни снега. Поэтому в нижних слоях стратосферы пролегают пути современных самолётов. В нижней части стратосферы температура более или менее постоянна, но с высоты 25 километров начинает повышаться и на верхней границе слоя близка к 0 °С.

Выше стратосферы лежат верхние слоя атмосферы. Температура здесь понижаете и на высоте 80 километров достигает минимума -80 °С. Воздух на этой высоте настолько разрежен, что не поглощает солнечное тепло и не рассеивает свет.

Выше температура в атмосфере быстро растёт и на высоте 500-600 километр составляет +1500 °С. Поэтому по температурному признаку в верхней атмосфере выделяют слой, называемый термосферой. Высоты атмосферы от 100 до 1000 километров называют ионосферой. Здесь под воздействием ультрафиолетовых лучей, идущих от Солнца, частицы газов сильно электризуются. Свечение этих частиц вызывает полярное сияние.

Земля - единственная из планет , которая имеет газовую оболочку, содержащую необходимый для дыхания кислород. Для большинства живых организмов атмосфера - среда жизни. Можно сказать, что растения, животные и люди обитают не только на твёрдой поверхности Земли, но и на дне «воздушного океана». Атмосфера защищает планету от вредных космических излучений и мелких метеоритов, которые сгорают в ней, не достигая поверхности Земли. Значительная часть солнечной энергии расходуется на нагрев приземного слоя воздуха. Атмосфера удерживает тепло у земной поверхности, подобно покрывалу предохраняет её от излишнего перегрева и переохлаждения. Испарившаяся с поверхности вода образует в тропосфере облака, которые также защищают Землю от перегрева. Они отражают часть солнечных лучей и приносят

Об истории исследования верхних слоев атмосферы Земли

Мы живем на дне воздушного океана, который простирается вверх на тысячи километров. И все наблюдаемые нами погодные явления происходят в его самом нижнем, тончайшем слое – тропосфере. Ее мощность по высоте в умеренных широтах составляет 10 – 12 км, в полярных широтах 8 – 10 км и 16 – 18 км в тропиках. По сравнению с протяженностью всей толщи атмосферы это ничтожно мало. Но в тропосфере, как уже было отмечено выше, сосредоточена вся наша погода со всем многообразием явлений и циркуляций. Также в ней сосредоточено 4/5 всей массы атмосферного воздуха.

Тем не менее, вышележащие слои земной атмосферы не менее важны для всего живого на нашей планете. Слой озона, находящийся в следующем за тропосферой слое – стратосфере, – является надежной преградой на пути к поверхности Земли гибельной для всего живого ультрафиолетовой радиации. Помимо этого установлено, что межгодовые вариации общего содержания озона (ОСО) в глобальном масштабе являются индикаторами изменений климата. А по изменениям ОСО в отдельных географических точках можно судить о предстоящих аномалиях приземной температуры в удаленных от этой точки географических районах в долгосрочной (до 40 дней) перспективе, что, несомненно, со временем может быть использовано для более точных долгосрочных прогнозов погоды.

Для изучения верхних слоев атмосферы длительное время применялись различные косвенные методы, к которым относятся прежде всего наблюдения за распространением звуковых волн, сумеречным небом, метеорными следами, перемещением и и др.

В 1930 году впервые для исследования атмосферы выпущен радиозонд, изобретенный советским метеорологом П.А. Молчановым, а в 1933 году Г.А. Прокофьев, К.Д. Годунов и Е.К. Бирнбаум поднялись на стратостате «СССР-1» на высоту 19 км.

Но записи научных наблюдений сохранились.

В 40–50-х годах прошлого столетия благодаря техническому прогрессу и оснащению метеорологии радиотехническими средствами стало возможным непосредственное измерение многих параметров атмосферы на высотах вначале до 20 – 30 км, а затем и до 60 – 100 км. Запуски метеорологических ракет и искусственных спутников Земли значительно расширили эти возможности.

Высокие радиозондовые подъемы позволили сделать важное открытие в стратосфере. Были обнаружены значительные сезонные (муссонные) изменения градиента температуры экватор – полюс и связанные с ними изменения режима давления и ветра.

Важным этапом стал Международный геофизический год, который длился с 1 июля 1957 года по 31 декабря 1958 года. Ученые из 64 стран вели исследования Земли по единой программе. За это время в СССР было запущено 112 метеорологических и 13 геофизических ракет. Полученные международными командами ученых данные позволили детально изучить строение атмосферы и особенности ее циркуляции до высоты 20 – 30 км.

Высотные наблюдения в верхней экваториальной стратосфере обнаружили многоцикличность воздушных течений – квазидвухлетнюю в нижней стратосфере и шестимесячную в верхней. При этом оба цикла находятся в определенной взаимосвязи.

21 февраля 1958г. в СССР был произведен запуск метеорологической ракеты весом 1520 кг, которая достигла рекордной высоты для одноступенчатых ракет этого класса – 473 км, а в конце лета того же года ракета поднялась на высоту 450 км, имея вес 1690 кг.

Использование в исследованиях атмосферы метеорологических и геофизических ракет позволило ученым получать надежные данные до высоты около 80 – 100 км.

Существенно новые данные о явлениях в околоземном пространстве были получены с помощью автоматических межпланетных станций «Луна-1», «Луна-2» и «Луна-3», запущенных соответственно 2 января, 12 сентября и 4 октября 1959 года. Так была обнаружена водородная геокорона, простирающаяся на 20 тысяч километров от Земли.

Добытая научная информация показала, что в атмосфере существует несколько слоев, которые отличаются друг от друга прежде всего и наиболее отчетливо характером вертикального распределения температуры. И если в начале XX века было принято разделять атмосферу только на две части: тропосферу (нижний слой) и стратосферу, под которой вначале понимались все слои атмосферы, расположенные выше тропосферы, то в настоящее время по рекомендации Всемирной метеорологической организации (ВМО) атмосферу принято делить на тропосферу, стратосферу , мезосферу, термосферу и экзосферу.

Об открытии озонового слоя

Ученые давно установили, что солнечный спектр постоянно обрывается в ультрафиолетовой части на одной и той же длине волны. Атмосфера оказалась непрозрачной для еще более коротких волн. Причина этого долго оставалась непонятной, так как внизу в составе атмосферы не был известен газ, который не пропускал бы ультрафиолетовых лучей. Наконец, в 1840 году в одной из физических лабораторий такой газ был найден. Разлагая воду на ее составные части – кислород и водород, удалось получить новый газ, обладающий чрезвычайно сильным характерным запахом. Его так и назвали «сильно пахнущим», по-гречески «озон».

Исследования показали, что с поднятием над земной поверхностью содержание озона сначала изменяется незакономерно, и только с высоты 10 км намечается его увеличение, особенно отчетливо выраженное выше 12 – 15 км. На высоте 20 – 25 км наблюдается максимум содержания озона, а выше количество озона постепенно убывает и становится ничтожным к высоте 55 – 60 км.

Как получали данные о содержании озона на высотах? Во-первых, путем анализа проб воздуха, взятых на высотах. Во-вторых, оптическим методом по измерениям интенсивности полос поглощения озона. Сначала на стратостатах, а позднее при помощи ракет в вышележащие слои атмосферы поднимали спектрограф, регистрирующий солнечный спектр. По интенсивности поглощения в ультрафиолетовой области спектра можно определить изменение количества озона с высотой.

Литература:
П.Н. Тверской. Курс метеорологии. Гидрометеоиздат, 1962.
Атмосфера Земли. Сборник. Москва, 1953.
А.Л. Кац. Циркуляция в стратосфере и мезосфере. Гидрометеоиздат, 1968.
Использованы также материалы журналов «Метеорология и гидрология» и «Наука и жизнь».

> > Атмосфера Земли

Для самых маленьких уже известно, что Земля выступает единственной планетой в нашей системе, которая обладает жизнеспособной атмосферой. Газовое покрывало не только богато на воздух, но и защищает нас от чрезмерного нагрева и солнечного излучения. Важно объяснить детям , что система устроена невероятно удачно, ведь позволяет поверхности прогреваться днем и остывать ночью, сохраняя допустимый баланс.

Начать объяснение для детей можно с того, что шар земной атмосферы распространяется на 480 км, но большая часть находится в 16 км от поверхности. Чем больше высота, тем ниже давление. Если брать уровень моря, то там давление равняется 1 кг на квадратный сантиметр. А вот на высоте в 3 км, оно изменится – 0.7 кг на квадратный сантиметр. Конечно, в таких условиях дышать сложнее (дети могли это прочувствовать, если когда-нибудь отправлялись в поход в горы).

Состав воздуха

Среди газов различают:

  • Азот – 78%.
  • Кислород – 21%.
  • Аргон – 0.93%.
  • Двуокись углерода – 0.038%.
  • В небольших количествах есть также водяной пар и прочие примеси газов.

Атмосферные слои

Родители или учителя в школе должны напомнить, что земная атмосфера делится на 5 уровней: экзосфера, термосфера, мезосфера, стратосфера и тропосфера. С каждым слоем атмосфера растворяется все больше, пока газы окончательно не рассеются в пространстве.

Тропосфера – находится ближе всего к поверхности. С толщиною в 7-20 км она составляет половину земной атмосферы. Чем ближе к Земле, тем сильнее прогревается воздух. Здесь собран почти весь водяной пар и пыль. Дети могут не удивляться, что именно на этом уровне плавают облака.

Стратосфера начинается от тропосферы и поднимается на 50 км над поверхностью. Здесь много озона, нагревающего атмосферу и спасающего от вредного солнечного излучения. Воздух в 1000 раз тоньше, чем над уровнем моря и необычайно сухой. Именно поэтому здесь прекрасно себя чувствуют самолеты.

Мезосфера: от 50 км до 85 км над поверхностью. Вершина называется мезопаузой и выступает наиболее прохладным местом в земной атмосфере (-90°C). Ее очень сложно исследовать, потому что туда не могут подобраться реактивные самолеты, а орбитальная высота спутников чересчур высока. Ученые лишь знают, что именно здесь сгорают .

Термосфера: 90 км и между 500-1000 км. Температура достигает 1500°C. Ее считают частью земной атмосферы, но важно объяснить детям , что плотность воздуха здесь настолько низкая, что большая часть воспринимается уже как космическое пространство. Фактически именно здесь размещаются космические шаттлы и Международная космическая станция. Кроме того, здесь образуются полярные сияния. Заряженные космические частицы соприкасаются с атомами и молекулами термосферы, переводя их на более высокий энергетический уровень. Благодаря этому мы и видим эти фотоны света в виде полярного сияния.

Экзосфера – наивысший слой. Невероятно тонкая линия слияния атмосферы с космосом. Состоит из широко рассеянных водородных и гелиевых частичек.

Климат и погода

Для самых маленьких нужно объяснить , что Земле удается удерживать множество живых видов благодаря региональному климату, который представлен экстремальным холодом на полюсах и тропическим теплом на экваторе. Дети должны знать, что региональный климат – это погода, которая в конкретном участке остается неизменной 30 лет. Конечно, иногда она может меняться на несколько часов, но по больше части остается стабильной.

Кроме того, выделяют и глобальный земной климат – средний показатель регионального. Он изменялся в течении всей человеческой истории. Сегодня наблюдается стремительное потепление. Ученые бьют тревогу, так как парниковые газы, вызванные человеческой деятельностью, удерживают тепло в атмосфере, рискуя превратить нашу планету в Венеру.