Самая высокая орбита. Геостационарная орбита

На геостационарной орбите спутник не приближается к Земле и не удаляется от неё, и кроме того, вращаясь вместе с Землёй, постоянно находится над какой-либо точкой на экваторе. Следовательно, действующие на спутник силы гравитации и центробежная сила должны уравновешивать друг друга. Для вычисления высоты геостационарной орбиты можно воспользоваться методами классической механики и, перейдя в систему отсчета спутника, исходить из следующего уравнения:

где – сила инерции, а в данном случае, центробежная сила;– гравитационная сила. Величину гравитационной силы, действующую на спутник, можно определить по закону всемирного тяготения Ньютона:

где – масса спутника,– масса Земли в килограммах,– гравитационная постоянная, а– радиус орбиты (расстояние в метрах от спутника до центра Земли).

Величина центробежной силы равна:

где – центростремительное ускорение, возникающее при круговом движении по орбите.

Как можно видеть, масса спутника присутствует в выражениях и для центробежной силы, и для гравитационной силы. То есть, высота орбиты не зависит от массы спутника, что справедливо для любых орбит и является следствием равенства гравитационной и инертной массы. Следовательно, геостационарная орбита определяется лишь высотой, при которой центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

Центростремительное ускорение равно:

где – угловая скорость вращения спутника, в радианах в секунду.

Исходя из равенства гравитационной и центробежной сил, получаем:

Угловая скорость ω вычисляется делением угла, пройденного за один оборот на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день, или 86 164 секунды). Получаем:рад/с

Расчетный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту ГСО 35 786 км.

Орбитальная скорость

Скорость движения по геостационарной орбите вычисляется умножением угловой скорости на радиус орбиты: км/с

Это примерно в 2.5 раза меньше, чем первая космическая скорость равная 8 км/с для околоземной орбиты (с радиусом 6400 км). Так как квадрат скорости для круговой орбиты обратно пропорционален её радиусу, то уменьшение скорости по отношению к первой космической достигается увеличением радиуса орбиты более чем в 6 раз.

Длина орбиты

Длина геостационарной орбиты: . При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км. Длина орбиты крайне важна для вычисления «точек стояния» спутников.

Удержание спутника в орбитальной позиции на геостационарной орбите.Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т.д. Деградация орбиты выражается в двух основных явлениях:

1) Спутник смещается вдоль орбиты от своей первоначальной орбитальной позиции в сторону одной из четырёх точек стабильного равновесия, так называемых «потенциальных ям геостационарной орбиты» (их долготы 75,3°E, 104,7°W, 165,3°E, и 14,7°W) над экватором Земли;

2) Наклонение орбиты к экватору увеличивается (от первоначального =0) со скоростью порядка 0,85 градусов в год и достигает максимального значения 15 градусов за 26,5 лет.

Для компенсации этих возмущений и удержания спутника в назначенной точке стояния спутник оснащается двигательной установкой (химической или электроракетной). Периодическими включениями двигателей малой тяги (коррекция «север-юг» для компенсации роста наклонения орбиты и «запад-восток» для компенсации дрейфа вдоль орбиты) спутник удерживается в назначенной точке стояния. Такие включения производятся по нескольку раз в несколько (10-15) суток. Существенно, что для коррекции «север-юг» требуется значительно большее приращение характеристической скорости (около 45-50 м/с в год), чем для долготной коррекции (около 2 м/с в год). Для обеспечения коррекции орбиты спутника на протяжении всего срока его эксплуатации (12-15 лет для современных телевизионных спутников) требуется значительный запас топлива на борту (сотни килограммов, в случае применения химического двигателя). Химический ракетный двигатель спутника имеет вытеснительную систему подачи топлива (газ наддува – гелий), работает на долгохранимых высококипящих компонентах (обычно несимметричный диметилгидразин и азотный тетраксид). На ряде спутников устанавливаются плазменные двигатели. Их тяга существенно меньше, чем у химических, однако большая эффективность позволяет (за счет продолжительной работы, измеряемой десятками минут для единичного маневра) радикально снизить потребную массу топлива на борту. Выбор типа двигательной установки определяется конкретными техническими особенностями аппарата.

Эта же двигательная установка используется, при необходимости, для маневра перевода спутника в другую орбитальную позицию. В некоторых случаях – как правило, в конце срока эксплуатации спутника, для сокращения расхода топлива коррекция орбиты «север-юг» прекращается, а остаток топлива используется только для коррекции «запад-восток». Запас топлива является основным лимитирующим фактором срока службы спутника на геостационарной орбите.



План:

    Введение
  • 1 Точка стояния
  • 2 Размещение спутников на орбите
  • 3 Вычисление параметров геостационарной орбиты
    • 3.1 Радиус орбиты и высота орбиты
    • 3.2 Орбитальная скорость
    • 3.3 Длина орбиты
  • 4 Связь
  • Примечания

Введение

Геостациона́рная орби́та (ГСО) - круговая орбита, расположенная над экватором Земли (0° широты), находясь на которой искусственный спутник обращается вокруг планеты с угловой скоростью, равной угловой скорости вращения Земли вокруг оси, и постоянно находится над одной и той же точкой на земной поверхности. Геостационарная орбита является разновидностью геосинхронной орбиты и используется для размещения искусственных спутников (коммуникационных, телетрансляционных и т. п.)

Спутник должен обращаться в направлении вращения Земли, на высоте 35 786 км над уровнем моря (вычисление высоты ГСО см. ниже). Именно такая высота обеспечивает спутнику период обращения, равный периоду вращения Земли относительно звёзд (сидерические сутки: 23 часа, 56 минут, 4,091 секунды).

Идея использования геостационарных спутников для целей связи высказывалась ещё [когда? ] К. Э. Циолковским и словенским теоретиком космонавтики Германом Поточником в 1928 г. Преимущества геостационарной орбиты получили широкую известность после выхода в свет научно-популярной статьи Артура Ч. Кларка в журнале «Wireless World» в 1945 году , поэтому на Западе геостационарная и геосинхронные орбиты иногда называются «орбитами Кларка », а «поясом Кларка » называют область космического пространства на расстоянии 36000 км над уровнем моря в плоскости земного экватора, где параметры орбит близки к геостационарной. Первым спутником, успешно выведенным на ГСО, был Syncom-2 , запущенный NASA в июле 1963 года.


1. Точка стояния

Спутник, находящийся на геостационарной орбите, неподвижен относительно поверхности Земли , поэтому его местоположение на орбите называется точкой стояния. В результате, сориентированная на спутник и неподвижно закреплённая направленная антенна может сохранять постоянную связь с этим спутником длительное время.


2. Размещение спутников на орбите

Для Архангельска максимально возможная высота спутника над горизонтом - 17,2°
Наивысшая точка пояса Кларка всегда находится строго на юге. В нижней части графика градусы - меридианы, над которыми находятся спутники.
По бокам - высоты спутников над горизонтом.
Сверху - направление на спутник. Для наглядности можно растянуть по горизонтали в 7,8 раза и отразить слева направо. Тогда он будет выглядеть так же, как на небе.

Геостационарная орбита может быть точно обеспечена только на окружности, расположенной прямо над экватором, с высотой, очень близкой к 35 786 км.

Если бы геостационарные спутники были видны на небе невооружённым глазом, то линия, на которой они были бы видны, совпадала бы с «поясом Кларка» для данной местности. Геостационарные спутники, благодаря имеющимся точкам стояния, удобно использовать для спутниковой связи: единожды сориентированная антенна всегда будет направлена на выбранный спутник (если он не сменит позицию).

Для перевода спутников с низковысотной орбиты на геостационарную используются переходные геостационарные (геопереходные) орбиты (ГПО) - эллиптические орбиты с перигеем на низкой высоте и апогеем на высоте, близкой к геостационарной орбите.

После завершения активной эксплуатации на остатках топлива спутник должен быть переведён на орбиту захоронения, расположенную на 200-300 км выше ГСО.


3. Вычисление параметров геостационарной орбиты

3.1. Радиус орбиты и высота орбиты

На геостационарной орбите спутник не приближается к Земле и не удаляется от неё, и кроме того, вращаясь вместе с Землёй, постоянно находится над какой-либо точкой на экваторе. Следовательно, действующие на спутник силы гравитации и центробежная сила должны уравновешивать друг друга. Для вычисления высоты геостационарной орбиты можно воспользоваться методами классической механики и исходить из следующего уравнения:

F u = F Γ ,

где F u - сила инерции, а в данном случае, центробежная сила; F Γ - гравитационная сила. Величину гравитационной силы, действующую на спутник, можно определить по закону всемирного тяготения Ньютона:

,

где m c - масса спутника, M 3 - масса Земли в килограммах, G - гравитационная постоянная, а R - расстояние в метрах от спутника до центра Земли или, в данном случае, радиус орбиты.

Величина центробежной силы равна:

,

где a - центростремительное ускорение, возникающее при круговом движении по орбите.

Как можно видеть, масса спутника m c присутствует как множитель в выражениях для центробежной силы и для гравитационной силы, то есть высота орбиты не зависит от массы спутника, что справедливо для любых орбит и является следствием равенства гравитационной и инертной массы. Следовательно, геостационарная орбита определяется лишь высотой, при которых центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

Центростремительное ускорение равно:

,

где ω - угловая скорость вращения спутника, в радианах в секунду.

Сделаем одно важное уточнение. В действительности, центростремительное ускорение имеет физический смысл только в инерциональной системе отсчета, в то время как центробежная сила является так называемой мнимой силой и имеет место исключительно в системах отсчета (координат), которые связаны с вращающимися телами. Центростремительная сила (в данном случае - сила гравитации) вызывает центростремительное ускорение. По модулю (по абсолютному численному значению) центростремительное ускорение в инерциальной системе отсчета равно центробежному в системе отсчета, связанной в нашем случае со спутником. Поэтому далее, с учетом сделанного замечания, мы можем употреблять термин «центростремительное ускорение» вместе с термином «центробежная сила».

Уравнивая выражения для гравитационной силы и центробежной силы с подстановкой центростремительного ускорения, получаем:

.

Сокращая m c , переводя R 2 влево, а ω 2 вправо, получаем:

.

Можно записать это выражение иначе, заменив на μ - геоцентрическую гравитационную постоянную:

Угловая скорость ω вычисляется делением угла, пройденного за один оборот ( радиан) на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день, или 86 164 секунды). Получаем:

рад/с

Полученный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту 35 786 км.


3.2. Орбитальная скорость

Орбитальная скорость (скорость, с которой спутник летит в космосе), вычисляется умножением угловой скорости на радиус орбиты:

км/с или = 11052 км/ч

Можно сделать вычисления и иначе. Высота геостационарной орбиты - это такое удаление от центра Земли, где угловая скорость спутника, совпадающая с угловой скоростью вращения Земли, порождает орбитальную (линейную) скорость, равную первой космической скорости (для обеспечения круговой орбиты) на данной высоте. Решая данное простое уравнение мы, разумеется, получим те же значения, что и в расчетах через центробежную силу. Понятно также, почему геостационарные орбиты такие высокие. Требуется достаточно далеко отвести спутник от Земли, чтобы первая космическая скорость там была столь небольшой (примерно 3 км/с, ср. примерно 8 км/с на низких орбитах)

Важно также отметить, что геостационарная орбита должна быть именно круговой (и именно поэтому выше говорилось именно о первой космической скорости). Если скорость будет ниже первой космической (на данном удалении от Земли), то спутник будет снижаться, если скорость будет выше первой космической, то орбита будет эллиптической, и спутник не сможет равномерно вращаться синхронно с Землей.


3.3. Длина орбиты

Длина геостационарной орбиты: . При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км.

Длина орбиты крайне важна для вычисления «точек стояния» спутников.

4. Связь

Связь через такого рода спутники характеризуется большими задержками в распространении сигнала. Даже один ход луча до спутника и обратно обходится почти в четверть секунды. Ping до другой точки на земле будет уже около половины секунды.

При высоте орбиты 35 786 км и скорости света около 300 000 км/с ход луча «Земля-спутник» требует 35786/300000 =~0,12 сек. Ход луча «Земля (передатчик) -> спутник -> Земля (приемник)» ~0,24 сек. Ping потребует ~0,48 сек

С учетом задержки сигнала в аппаратуре ИСЗ и аппаратуре наземных служб общая задержка сигнала на маршруте Земля -> спутник -> Земля может достигать 2-4 с.

Поддержание спутника в точке стояния на геостационарной орбите требует энергетических и, соответственно, финансовых затрат. Связано это именно с тем, что орбита должна быть строго круговой, иметь строго определенную высоту и характеризоваться строго определенной скоростью (все три параметра взаимосвязаны). Поэтому геостационарные спутники достаточно быстро расходуют имеющийся у них запас топлива для коррекции скорости и высоты орбиты. Именно поэтому в настоящее время в основном используют не «висящие», а «восьмерочные» спутники, находящиеся на геосинхронных орбитах, которые, помимо прочего, могут быть значительно ниже геостационарной. Кроме того, «спарка» двух спутников на встречных эллиптических орбитах, расположенных под углом к плоскости экватора, в эксплуатации значительно дешевле одного геостационарного спутника.

Однако геостационарные спутники по-прежнему являются незаменимыми для многих военно-разведывательных целей, а также для целей так называемого космического прицеливания, то есть для ориентирования космических кораблей при выходе на орбиту и при переходе с орбиты на орбиту. Кроме того, в перспективе именно геостационарные спутники могут обеспечить работу так называемых космических лифтов.


Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 09.07.11 23:38:18
Похожие рефераты: Геостационарный банан над Техасом , Спутник (РН) , Пан (спутник) , Маб (спутник) , Ио (спутник) , Зея (спутник) , Зоя (спутник) , Спутник-3 , Спутник-5 .

Глава 3

ОРБИТЫ ИСКУССТВЕННЫХ СПУТНИКОВ ЗЕМЛИ. ВЫВОД СПУТНИКОВ НА ОРБИТУ

Траектория движения ИСЗ называется орбитой. Во время свободного полета спутника, когда его бортовые реактивные двигатели выключены, движение происходит под воздействием гравитационных сил и по инерции, причем главной силой является притяжение Земли.

Если считать Землю строго сферической, а действие гравитационного поля Земли - единственной силой, воздействующей на спутник, то движение ИСЗ подчиняется известным законам Кеплера: оно происходит в неподвижной (в абсолютном пространстве) плоскости, проходящей через центр Земли, - плоскости орбиты; орбита имеет форму эллипса (рис 3.1) или окружности (частный случай эллипса).


При движении спутника полная механическая энергия (кинетическая и потенциальная) остается неизменной, вследствие чего при удалении спутника от Земли скорость его движения уменьшается.

Уравнение эллиптической орбиты спутника Земли в полярной системе координат определяется формулой


В случае эллиптической орбиты точкой перигея называют точку орбиты, соответствующую наименьшему значению радиус-вектора r = rп, точкой апогея - точку, соответствующую наибольшему значению r = ra (рис. 3.2).

Земля находится в одном из фокусов эллипса. Входящие в формулу (3.1) величины связаны соотношениями:


Расстояние между фокусами и центром эллипса составляет ае, т. е. пропорционально эксцентриситету. Высота спутника над поверхностью Земли

где R - радиус Земли. Линия пересечения плоскости орбиты с плоскостью экватора (а - а на рис. 3.1) называется линией узлов, угол i между плоскостью орбиты и плоскостью экватора - наклонением орбиты. По наклонению различают экваториальные (i = 0°), полярные (i = 90°) и наклонные орбиты,(0°90°

Орбита спутника характеризуется также долготой апогея д - долгота подспутниковой точки (точка пересечения радиуса-вектора с поверхностью Земли) в момент прохождения спутником апогея и периодом обращения Т (время между двумя последовательными прохождениями одной и той же точки орбиты).

Для систем связи и вещания необходимо, чтобы имелась прямая видимость между спутником и соответствующими земными станциями в течение сеанса связи достаточной длительности. Если сеанс не круглосуточный, то удобно, чтобы он повторялся ежесуточно в одно и то же время. Поэтому предпочтительны синхронные орбиты с периодом обращения, равным или кратным времени оборота Земли вокруг оси, т. е. звездным суткам (23 ч 56 мин 4 с).

Широкое применение нашла высокая эллиптическая орбита с периодом обращения 12 ч, когда для систем связи и вешания использовались спутники «Молния» (высота перигея 500 км, апогея - 40 тыс. км). Движение ИСЗ на большой высоте - в области апогея - замедляется, а область перигея, расположенную над южным полушарием Земли, спутник проходит очень быстро. Зона видимости ИСЗ на орбите типа «Молния» в течение большей части витка вследствие значительной высоты велика. Она расположена в северном полушарии и поэтому удобна для северных стран. Обслуживание всей территории бывшего СССР одним из ИСЗ возможно в течение не менее 8 ч, поэтому трех ИСЗ, сменяющих друг друга, было достаточно для круглосуточной работы. В настоящее время ради исключения перерывов связи и вещания, упрощения систем наведения антенн земных станций на ИСЗ и других эксплуатационных преимуществ осуществлен переход на использование геостационарных орбит (ГСО) спутников Земли.

Орбита геостационарного ИСЗ - это круговая (эксцентриситет е = 0), экваториальная (наклонение i = 0°), синхронная орбита с периодом обращения 24 ч, с движением спутника в восточном направлении.

Орбиту ГСО еще в 1945 г. рассчитал и предложил использовать для спутников связи английский инженер Артур Кларк, известный впоследствии как писатель-фантаст. В Англии и многих других странах геостационарную орбиту называют «Пояс Кларка» (рис. 3.3).


Орбита имеет форму окружности, лежащей в плоскости земного экватора с высотой над поверхностью Земли 35 786 км. Направление вращения ИСЗ совпадает с направлением суточного вращения Земли. Поэтому для земного наблюдателя спутник кажется неподвижным в определенной точке небесной полусферы.

Геостационарная орбита уникальна тем, что ни при каком другом сочетании параметров нельзя добиться неподвижности свободно движущегося ИСЗ относительно земного наблюдателя. Необходимо отметить некоторые достоинства геостационарных ИСЗ. Связь осуществляется непрерывно, круглосуточно, без переходов (заходящего ИСЗ на другой);

на антеннах земных станций упрощены, а на некоторых даже исключены системы автоматического сопровождения ИСЗ;

механизм привода (перемещения) передающей и приемной антенн облегчен, упрошен, сделан более экономичным; достигнуто более стабильное значение ослабления сигнала на трассе Земля - Космос; зона видимости геостационарного ИСЗ около одной трети земной поверхности; трех геостационарных ИСЗ достаточно для создания глобальной системы связи; отсутствует (или становится весьма малым) частотный сдвиг, обусловленный эффектом Доплера.

Эффектом Доплера называют физическое явление, заключающееся в изменении частоты высокочастотных электромагнитных колебаний при взаимном перемещении передатчика и приемника. Эффект Доплера объясняется изме

нением расстояния во времени. Этот эффект может возникнуть также и при движении ИСЗ на орбите. На линиях связи через строго гестационарный спутник доплеровский сдвиг не возникает, на реальных геостационарных ИСЗ - мало существен, а на сильно вытянутых эллиптических или низких круговых орбитах может быть значительным. Эффект проявляется как нестабильность несущей частоты ретранслируемых спутником колебаний, которая добавляется к аппаратурной нестабильности частоты, возникающей в аппаратуре бортового ретранслятора и земной станции. Эта нестабильность может существенно осложнять прием сигналов, приводя к снижению помехоустойчивости приема.

К сожалению, эффект Доплера способствует изменению частоты модулирующих колебаний. Это сжатие (или расширение) спектра передаваемого сигнала невозможно контролировать аппаратурными методами, так что если сдвиг частоты превысит допустимые пределы (например, 2 Гц для некоторых типов аппаратуры частотного разделения каналов), то канал оказывается неприемлемым.

Существенное влияние на свойства каналов связи оказывает и запаздывание радиосигнала при его распространении по линии Земля - ИСЗ - Земля.

При передаче симплексных (однонаправленных) сообщений (программ телевидения, звукового вешания и других дискретных (прерывистых) сообщений это запаздывание не ощущается потребителем. Однако при дуплексной (двусторонней) связи запаздывание на несколько секунд уже заметно. Например, электромагнитная волна от Земли на ГСО и обратно «путешествует» 2...4 с (с учетом задержки сигнала в аппаратуре ИСЗ) и наземной аппаратуре. В этом случае не имеет смысла передавать сигналы точного времени.

Вывод геостационарного спутника на орбиту обычно осуществляется многоступенчатой ракетой через промежуточную орбиту. Современная ракета-носитель представляет собой сложный космический летательный аппарат, который приводится в движение реактивной силой ракетного двигателя.

В состав ракеты-носителя входят ракетный и головной блоки. Ракетный блок является автономной частью составной ракеты с топливным отсеком, двигательной установкой и элементами системы разделения ступеней. Головной блок включает в себя полезную нагрузку и обтекатель, защищающий конструкцию ИСЗ от силового и теплового воздействий набегающего потока воздуха при полете в атмосфере и служащего для монтажа на его внутренней поверхности элементов, которые участвуют в подготовке к пуску, но не функционируют в полете. Главный обтекатель позволяет облегчить конструкцию ИСЗ и является пассивным элементом, надобность в котором отпадает после выхода ракеты-носителя из плотных слоев атмосферы, где он сбрасывается. Полезная нагрузка космического аппарата состоит из ретрансляционного оборудования связи и вещания, радиотелеметрических систем, собственно корпуса ИСЗ со всеми вспомогательными и обеспечивающими системами.

Принцип действий одноразовой многоступенчатой ракеты-носителя состоит в следующем: пока работает первая ступень, можно рассматривать остальные вместе с истинной полезной нагрузкой в качестве полезной нагрузки первой ступени. После ее отделения начинает работать вторая, которая вместе с последующими ступенями и истинной полезной нагрузкой образует новую самостоятельную ракету. Для второй ступени все последующие (если они есть) вместе с истинным полезным грузом играют роль полезной нагрузки и так далее, т. е. полет ее характеризуется несколькими этапами, каждый из которых является как бы ступенью для сообщения начальной скорости другим одноступенчатым ракетам, входящим в ее состав. При этом начальная скорость каждой последующей одноступенчатой ракеты равна конечной скорости предыдущей. Отторжение первой и последующих ступеней носителя осуществляется после полного выгорания топлива в двигательной установке.

Путь, который проходит ракета-носитель при выведении ИСЗ на орбиту, называют траекторией полета. Он характеризуется активным и пассивным участками. Активный участок полета - это пролет ступеней носителя с работающими двигателями, пассивный участок - полет отработавших ракетных блоков после их отделения от ракеты-носителя.

Носитель,стартуя вертикально (участок 1, расположенный на высоте 185... 250 км), выходит затем на криволиней


ный активный участок 2 в восточном направлении. На этом участке первая ступень обеспечивает постепенное уменьшение угла наклона ее оси по отношению к местному горизонту. Участки 3, 4 - соответственно активные участки полета второй и третьей ступеней, 5 - орбита ИСЗ, 6, 7 - пассивные участки полета ракетных блоков первой и второй ступеней (рис. 3.4).

При выведении ИСЗ на соответствующую орбиту большую роль играют время и место запуска ракеты-носителя. Подсчитано, что космодром выгоднее располагать как можно ближе к экватору, так как при разгоне в восточном направлении ракета-носитель получает дополнительную скорость. Эта скорость называется окружной скоростью космодрома Vк, т. е. скорость его движения вокруг оси Земли благодаря суточному вращению планеты.


т. е. на экваторе она равна 465 м/с, а на широте космодрома Байконур - 316 м/с. Практически это означает, что с экватора той же ракетой-носителем может быть запушен более тяжелый ИСЗ.

Завершающей стадией полета ракеты-носителя является вывод ИСЗ на орбиту, форма которой определяется кинетической энергией, сообщаемой ИСЗ ракетой, т. е. конечной скоростью носителя. В том случае, когда спутнику сообщается количество энергии, достаточное для его вывода на ГСО, ракета-носитель должна вывести в точку, удаленную от Земли на 35 875 км, и сообщить ему при этом скорость 3075 м/с.

Орбитальную скорость геостационарного ИСЗ легко подсчитать. Высота ГСО над поверхностью Земли 35 786 км, радиус ГСО на 6366 км больше (средний радиус Земли), т. е. 42 241 км. Умножив значение радиуса ГСО на 2л (6,28), получим ее длину окружности - 265 409 км. Если разделить ее на длительность суток в секундах (86 400 с), получим орбитальную скорость ИСЗ - в среднем 3,075 км/с, или 3075 м/с.

Обычно вывод спутника ракетой-носителем осуществляется в четыре этапа: выход на начальную орбиту; выход на орбиту «ожидания» (парковочную орбиту); выход на переходную орбиту; выход на конечную орбиту (рис. 3.5). Цифрам соответствуют следующие этапы вывода спутника на ГСО: 1 - первоначальная переходная орбита; 2 - первое

включение апогейного двигателя для выхода на промежуточную переходную орбиту; 3 - определение положения на орбите;

4 - второе включение апогейного двигателя для выхода на первоначальную орбиту дрейфа; 5 - переориентация плоскости орбиты и коррекция ошибок; 6 - ориентация перпендикулярно к плоскости орбиты и коррекция ошибок; 7 -

остановка платформы спутника, раскрытие панелей, полная расстыковка с ракетой; 8 - раскрытие антенн, включение гиростабилизатора; 9 - стабилизация положения: ориентация антенн на нужную точку Земли, ориентация солнечных батарей на Солнце, включение бортового ретранслятора и установление номинального режима его работы.

: 23 часа 56 минут 4,091 секунды).

Идея использования геостационарных спутников для целей связи высказывалась ещё словенским теоретиком космонавтики Германом Поточником в 1928 году .

Преимущества геостационарной орбиты получили широкую известность после выхода в свет научно-популярной статьи Артура Кларка в журнале «Wireless World» в 1945 году , поэтому на Западе геостационарная и геосинхронные орбиты иногда называются «орбитами Кларка », а «поясом Кларка » называют область космического пространства на расстоянии 36000 км над уровнем моря в плоскости земного экватора, где параметры орбит близки к геостационарной. Первым спутником, успешно выведенным на ГСО, был Syncom-3 , запущенный NASA в августе 1964 года .

Энциклопедичный YouTube

  • 1 / 5

    Геостационарная орбита может быть точно обеспечена только на окружности, расположенной прямо над экватором, с высотой, очень близкой к 35 786 км.

    Если бы геостационарные спутники были видны на небе невооружённым глазом, то линия, на которой они были бы видны, совпадала бы с «поясом Кларка» для данной местности. Геостационарные спутники, благодаря имеющимся точкам стояния, удобно использовать для спутниковой связи: единожды сориентированная антенна всегда будет направлена на выбранный спутник (если он не сменит позицию).

    Для перевода спутников с низковысотной орбиты на геостационарную используются переходные геостационарные (геопереходные) орбиты (ГПО) - эллиптические орбиты с перигеем на низкой высоте и апогеем на высоте, близкой к геостационарной орбите.

    После завершения активной эксплуатации на остатках топлива спутник должен быть переведён на орбиту захоронения , расположенную на 200-300 км выше ГСО.

    Вычисление параметров геостационарной орбиты

    Радиус орбиты и высота орбиты

    На геостационарной орбите спутник не приближается к Земле и не удаляется от неё, и кроме того, вращаясь вместе с Землёй, постоянно находится над какой-либо точкой на экваторе. Следовательно, действующие на спутник силы гравитации и центробежная сила должны уравновешивать друг друга. Для вычисления высоты геостационарной орбиты можно воспользоваться методами классической механики и, перейдя в систему отсчета спутника, исходить из следующего уравнения:

    F u = F Γ {\displaystyle F_{u}=F_{\Gamma }} ,

    где F u {\displaystyle F_{u}} - сила инерции, а в данном случае, центробежная сила; F Γ {\displaystyle F_{\Gamma }} - гравитационная сила. Величину гравитационной силы, действующую на спутник, можно определить по закону всемирного тяготения Ньютона :

    F Γ = G ⋅ M 3 ⋅ m c R 2 {\displaystyle F_{\Gamma }=G\cdot {\frac {M_{3}\cdot m_{c}}{R^{2}}}} ,

    где - масса спутника, M 3 {\displaystyle M_{3}} - масса Земли в килограммах , G {\displaystyle G} - гравитационная постоянная , а R {\displaystyle R} - расстояние в метрах от спутника до центра Земли или, в данном случае, радиус орбиты.

    Величина центробежной силы равна:

    F u = m c ⋅ a {\displaystyle F_{u}=m_{c}\cdot a} ,

    где a {\displaystyle a} - центростремительное ускорение, возникающее при круговом движении по орбите.

    Как можно видеть, масса спутника m c {\displaystyle m_{c}} присутствует как множитель в выражениях для центробежной силы и для гравитационной силы, то есть высота орбиты не зависит от массы спутника, что справедливо для любых орбит и является следствием равенства гравитационной и инертной массы . Следовательно, геостационарная орбита определяется лишь высотой, при которых центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

    Центростремительное ускорение равно:

    a = ω 2 ⋅ R {\displaystyle a=\omega ^{2}\cdot R} ,

    где - угловая скорость вращения спутника, в радианах в секунду.

    Сделаем одно важное уточнение. В действительности, центростремительное ускорение имеет физический смысл только в инерциальной системе отсчета, в то время как центробежная сила является так называемой мнимой силой и имеет место исключительно в системах отсчета (координат), которые связаны с вращающимися телами. Центростремительная сила (в данном случае - сила гравитации) вызывает центростремительное ускорение. По модулю центростремительное ускорение в инерциальной системе отсчета равно центробежному в системе отсчета, связанной в нашем случае со спутником. Поэтому далее, с учетом сделанного замечания, мы можем употреблять термин «центростремительное ускорение» вместе с термином «центробежная сила».

    Уравнивая выражения для гравитационной и центробежной сил с подстановкой центростремительного ускорения, получаем:

    m c ⋅ ω 2 ⋅ R = G ⋅ M 3 ⋅ m c R 2 {\displaystyle m_{c}\cdot \omega ^{2}\cdot R=G\cdot {\frac {M_{3}\cdot m_{c}}{R^{2}}}} .

    Сокращая m c {\displaystyle m_{c}} , переводя R 2 {\displaystyle R^{2}} влево, а ω 2 {\displaystyle \omega ^{2}} вправо, получаем:

    R 3 = G ⋅ M 3 ω 2 {\displaystyle R^{3}=G\cdot {\frac {M_{3}}{\omega ^{2}}}} R = G ⋅ M 3 ω 2 3 {\displaystyle R={\sqrt[{3}]{\frac {G\cdot M_{3}}{\omega ^{2}}}}} .

    Можно записать это выражение иначе, заменив G ⋅ M 3 {\displaystyle G\cdot M_{3}} на μ {\displaystyle \mu } - геоцентрическую гравитационную постоянную:

    R = μ ω 2 3 {\displaystyle R={\sqrt[{3}]{\frac {\mu }{\omega ^{2}}}}}

    Угловая скорость ω {\displaystyle \omega } вычисляется делением угла, пройденного за один оборот ( 360 ∘ = 2 ⋅ π {\displaystyle 360^{\circ }=2\cdot \pi } радиан) на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день , или 86 164 секунды). Получаем:

    ω = 2 ⋅ π 86164 = 7 , 29 ⋅ 10 − 5 {\displaystyle \omega ={\frac {2\cdot \pi }{86164}}=7,29\cdot 10^{-5}} рад/с

    Полученный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту 35 786 км.

    Можно сделать вычисления и иначе. Высота геостационарной орбиты - это такое удаление от центра Земли, где угловая скорость спутника, совпадающая с угловой скоростью вращения Земли, порождает орбитальную (линейную) скорость, равную первой космической скорости (для обеспечения круговой орбиты) на данной высоте.

    Линейная скорость спутника, движущегося с угловой скоростью ω {\displaystyle \omega } на расстоянии R {\displaystyle R} от центра вращения равна

    v l = ω ⋅ R {\displaystyle v_{l}=\omega \cdot R}

    Первая космическая скорость на расстоянии R {\displaystyle R} от объекта массой M {\displaystyle M} равна

    v k = G M R ; {\displaystyle v_{k}={\sqrt {G{\frac {M}{R}}}};}

    Приравняв правые части уравнений друг к другу, приходим к полученному ранее выражению радиуса ГСО:

    R = G M ω 2 3 {\displaystyle R={\sqrt[{3}]{G{\frac {M}{\omega ^{2}}}}}}

    Орбитальная скорость

    Скорость движения по геостационарной орбите вычисляется умножением угловой скорости на радиус орбиты:

    v = ω ⋅ R = 3 , 07 {\displaystyle v=\omega \cdot R=3,07} км/с

    Это примерно в 2.5 раза меньше, чем первая космическая скорость равная 8 км/с на околоземной орбите (с радиусом 6400 км). Так как квадрат скорости для круговой орбиты обратно пропорционален её радиусу,

    v = G M R ; {\displaystyle v={\sqrt {G{\frac {M}{R}}}};}

    то уменьшение скорости по отношению к первой космической достигается увеличением радиуса орбиты более чем в 6 раз.

    R ≈ 6400 ∗ (8 3 , 07) 2 ≈ 43000 {\displaystyle R\approx \,\!{6400*({\frac {8}{3,07}})^{2}}\approx \,\!43000}

    Длина орбиты

    Длина геостационарной орбиты: 2 ⋅ π ⋅ R {\displaystyle {2\cdot \pi \cdot R}} . При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км.

    Длина орбиты крайне важна для вычисления «точек стояния» спутников.

    Удержание спутника в орбитальной позиции на геостационарной орбите

    Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т. д. Деградация орбиты выражается в двух основных явлениях:

    1) Спутник смещается вдоль орбиты от своей первоначальной орбитальной позиции в сторону одной из четырёх точек стабильного равновесия, т. н. «потенциальных ям геостационарной орбиты» (их долготы 75,3°E, 104,7°W, 165,3°E, и 14,7°W) над экватором Земли;

    2) Наклонение орбиты к экватору увеличивается (от первоначального 0) со скоростью порядка 0,85 градусов в год и достигает максимального значения 15 градусов за 26,5 лет.

    Для компенсации этих возмущений и удержания спутника в назначенной точке стояния спутник оснащается двигательной установкой (химической или электроракетной). Периодическими включениями двигателей малой тяги (коррекция «север-юг» для компенсации роста наклонения орбиты и «запад-восток» для компенсации дрейфа вдоль орбиты) спутник удерживается в назначенной точке стояния. Такие включения производятся по нескольку раз в несколько (10-15) суток. Существенно, что для коррекции «север-юг» требуется значительно большее приращение характеристической скорости (около 45-50 м/с в год), чем для долготной коррекции (около 2 м/с в год). Для обеспечения коррекции орбиты спутника на протяжении всего срока его эксплуатации (12-15 лет для современных телевизионных спутников) требуется значительный запас топлива на борту (сотни килограммов, в случае применения химического двигателя). Химический ракетный двигатель спутника имеет вытеснительную подачу топлива (газ наддува-гелий), работает на долгохранимых высококипящих компонентах (обычно несимметричный диметилгидразин и диазотный тетраоксид). На ряде спутников устанавливаются плазменные двигатели. Их тяга существенно меньше по отношению к химическим, однако большая эффективность позволяет (за счет продолжительной работы, измеряемой десятками минут для единичного маневра) радикально снизить потребную массу топлива на борту. Выбор типа двигательной установки определяется конкретными техническими особенностями аппарата.

    Эта же двигательная установка используется, при необходимости, для маневра перевода спутника в другую орбитальную позицию. В некоторых случаях - как правило, в конце срока эксплуатации спутника, для сокращения расхода топлива коррекция орбиты «север-юг» прекращается, а остаток топлива используется только для коррекции «запад-восток».

    Запас топлива является основным лимитирующим фактором срока службы спутника на геостационарной орбите.

    Недостатки геостационарной орбиты

    Задержка сигнала

    Связь через геостационарные спутники характеризуется большими задержками в распространении сигнала. При высоте орбиты 35 786 км и скорости света около 300 000 км/с ход луча «Земля-спутник» требует около 0,12 с. Ход луча «Земля (передатчик) → спутник → Земля (приемник)» ≈0,24 с. Полная задержка (измеряемая утилитой Ping) при использовании спутниковой связи для приема и передачи данных составит почти полсекунды. С учетом задержки сигнала в аппаратуре ИСЗ, в аппаратуре и в кабельных системах передач наземных служб общая задержка сигнала на маршруте «источник сигнала → спутник → приёмник» может достигать 2-4 секунд . Такая задержка затрудняет применение спутников на ГСО в телефонии и делает невозможной применение спутниковой связи с использованием ГСО в различных сервисах реального времени (например в онлайн-играх) .

    Невидимость ГСО с высоких широт

    Так как геостационарная орбита не видна с высоких широт (приблизительно от 81° до полюсов), а на широтах выше 75° наблюдается очень низко над горизонтом (в реальных условиях спутники просто скрываются выступающими объектами и рельефом местности) и виден лишь небольшой участок орбиты (см. таблицу ), то невозможна связь и телетрансляция с использованием ГСО в высокоширотных районах Крайнего Севера (Арктики) и Антарктиды . К примеру, американские полярники на станции Амундсен-Скотт для связи с внешним миром (телефония, интернет) используют оптоволоконный кабель длиной 1670 километров до расположенной на 75° ю.ш. французской станции Конкордия , с которой уже видно несколько американских геостационарных спутников (~60°) видимый сектор орбиты (и соответственно количество принимаемых спутников) равен 84 % от максимально возможного (на и спутник-передатчик находятся на одной линии с приёмной антенной (положение «солнце за спутником»). Данное явление присуще и другим орбитам, но именно на геостационарной, когда спутник «неподвижен» на небе, проявляется особенно ярко. В средних широтах северного полушария солнечная интерференция проявляется в периоды с 22 февраля по 11 марта и с 3 по 21 октября, с максимальной длительностью до десяти минут, .

    Эти притязания экваториальных государств были отвергнуты, как противоречащие принципу неприсвоения космического пространства. В Комитете ООН по космосу такие заявления подверглись обоснованной критике. Во-первых, нельзя претендовать на присвоение какой-либо территории или пространства, находящегося на таком значительном удалении от территории соответствующего государства. Во-вторых, космическое пространство не подлежит национальному присвоению. В-третьих, технически неправомочно говорить о какой-либо физической взаимосвязи между государственной территорией и столь отдаленным районом космоса. Наконец, в каждом отдельном случае феномен геостационарного спутника связан с конкретным космическим объектом. Если нет спутника, то нет и геостационарной орбиты.

    В наше время человечество использует несколько различных орбит для размещения спутников. Наибольшее внимание приковано к геостационарной орбите, которая может быть использована для «стационарного» размещения спутника над той или иной точкой Земли. Орбита, выбираемая для работы спутника, зависит от его назначения. К примеру, спутники, используемые для прямого вещания телевизионных программ, помещают на геостационарную орбиту. Многие спутники связи также находятся на геостационарной орбите. Другие спутниковые системы, в частности те, которые используются для связи между спутниковыми телефонами, вращаются на низкой околоземной орбите. Аналогично спутниковые системы, используемые для систем навигации, таких как Navstar или Система глобального позиционирования (GPS), также находятся на относительно низких околоземных орбитах. Существует ещё бесчисленное множество других спутников – метеорологические, исследовательские и так далее. И каждый из них, в зависимости от своего назначения, получает «прописку» на определённой орбите.

    Читайте также:

    Конкретная орбита, избираемая для работы спутника, зависит от множества факторов, среди которых – функции спутника, а также обслуживаемая им территория. В одних случаях это может быть крайне низкая околоземная орбита (LEO), находящаяся на высоте всего 160 километров над Землёй, в других случаях спутник находится на высоте более 36 000 километров над Землёй – то есть, на геостационарной орбите GEO. Более того, ряд спутников использует не круговую орбиту, а эллиптическую.

    Притяжение Земли и спутниковые орбиты

    По мере обращения спутников на околоземной орбите они потихоньку с неё смещаются из-за силы притяжения Земли. Если бы спутники не вращались по орбите, они бы начали постепенно падать на Землю и сгорели бы в верхних слоях атмосферы. Однако само вращение спутников вокруг Земли создаёт силу, отталкивающую их от нашей планеты. Для каждой из орбит существует своя расчётная скорость, которая позволяет сбалансировать силу притяжения Земли и центробежную силу, удерживая аппарат на постоянной орбите и не давая ему ни набирать, ни терять высоту.

    Вполне понятно, что чем ниже орбита спутника, тем сильнее на него влияет притяжение Земли и тем большая требуется скорость для преодоления этой силы. Чем больше расстояние от поверхности Земли до спутника – тем, соответственно, меньшая требуется скорость для его нахождения на постоянной орбите. Для аппарата, вращающегося на расстоянии около 160 км над поверхностью Земли, требуется скорость примерно 28 164 км/ч, а это значит, что такой спутник совершает виток вокруг Земли примерно за 90 минут. На расстоянии 36 000 км над поверхностью Земли спутнику для нахождения на постоянной орбите требуется скорость немногим менее 11 266 км/ч, что даёт возможность такому спутнику обращаться вокруг Земли примерно за 24 часа.

    Определения круговой и эллиптической орбит

    Все спутники обращаются вокруг Земли, используя один из двух базовых типов орбит.

    • Круговая спутниковая орбита: при обращении космического аппарата вокруг Земли по круговой орбите его расстояние над земной поверхностью остаётся всегда одинаковым.
    • Эллиптическая спутниковая орбита: Вращение спутника по эллиптической орбите означает изменение расстояния до поверхности Земли в разное время в течение одного витка.
    Читайте также:

    Спутниковые орбиты

    Существует множество различных определений, связанных с различными типами спутниковых орбит:

    • Центр Земли: Когда спутник обращается вокруг земли – по круговой или эллиптической орбите – орбита спутника формирует плоскость, которая проходит через центр земного притяжения или же Центр Земли.
    • Направление движения вокруг Земли: Способы обращения спутника вокруг нашей планеты можно разбить на две категории в соответствии с направлением этого обращения:

    1. Ускорительная орбита: Обращение спутника вокруг Земли называют ускорительным, если спутник вращается в том же направлении, в котором вращается Земля;
    2. Ретроградная орбита: Обращение спутника вокруг Земли называют ретроградным, если спутник вращается в направлении, противоположном направлению вращения Земли.

    • Трасса орбиты: трассой орбиты спутника называют точку на земной поверхности, при пролёте над которой спутник находится прямо над головой в процессе движения по орбите вокруг Земли. Трасса образует круг, в центре которого расположен Центр Земли. Следует отметить, что геостационарные спутники представляют собой особый случай, поскольку они постоянно находятся над одной и той же точкой над поверхностью Земли. Это означает, что их трасса орбиты состоит из одной точки, расположенной на экваторе Земли. Также можно добавить, что трасса орбиты спутников, вращающихся строго над экватором, тянется вдоль этого самого экватора.

    Для этих орбит, как правило, характерно смещение трассы орбиты каждого спутника в западном направлении, поскольку Земля под спутником обращается в восточном направлении.

    • Орбитальные узлы: Это точки, в которых трасса орбиты переходит из одного полушария в другое. Для неэкваториальных орбит существует два таких узла:

    1. Восходящий узел: Это узел, в котором трасса орбиты переходит из южного полушария в северное.
    2. Нисходящий узел: Это узел, в котором трасса орбиты переходит из северного полушария в южное.

    • Высота спутника: При расчёте многих орбит необходимо учитывать высоту спутника над центром Земли. Этот показатель включает расстояние от спутника до поверхности Земли плюс радиус нашей планеты. Как правило, считается, что он равен 6370 километрам.
    • Орбитальная скорость: Для круговых орбит она всегда одинакова. Однако в случае с эллиптическими орбитами всё обстоит иначе: скорость обращения спутника по орбите изменяется в зависимости от его позиции на этой самой орбите. Она достигает своего максимума при наибольшем приближении к Земле, где спутнику предстоит максимальное противостояние силе притяжения планеты, и снижается до минимума при достижении точки наибольшего удаления от Земли.
    • Угол подъёма: Углом подъёма спутника называют угол, на котором спутник расположен над линией горизонта. Если угол слишком мал, сигнал может быть перекрыт расположенными близко объектами – в случае, если приёмная антенна поднята недостаточно высоко. Однако и для антенн, которые подняты над препятствием, также существует проблема при приёме сигнала со спутников, имеющих низкий угол подъёма. Причина здесь в том, что спутниковый сигнал в таком случае должен пройти большее расстояние через земную атмосферу и в результате он подвергается большему ослаблению. Минимально допустимым углом подъёма для более-менее удовлетворительного приёма принято считать угол в пять градусов.
    • Угол наклона: Не все спутниковые орбиты следуют вдоль линии экватора – на самом деле, большая часть низких околоземных орбит не придерживается этой линии. А поэтому необходимо определять угол наклона орбиты спутника. Диаграмма, расположенная ниже, иллюстрирует данный процесс.


    Угол наклона спутниковой орбиты

    Прочие показатели, связанные со спутниковой орбитой

    Для того чтобы спутник мог использоваться для предоставления услуг связи, наземные станции должны иметь возможность «следить» за ним с целью получения с него сигнала и отправки сигнала на него. Понятно, что связь со спутником возможна лишь в то время, когда он находится в зоне видимости наземных станций, и, в зависимости от типа орбиты, он может находиться в зоне видимости лишь в короткие промежутки времени. Для уверенности в том, что связь со спутником возможна в течение максимального промежутка времени, существует несколько вариантов, которые можно использовать:

    • Первый вариант состоит в использовании эллиптической орбиты, точка апогея которой находится в аккурат над планируемым размещением наземной станции, что даёт возможность спутнику пребывать в зоне видимости этой станции в течение максимального промежутка времени.
    • Второй вариант заключается в запуске нескольких спутников на одну орбиту, и, таким образом, в то время, когда один из них исчезает из виду и связь с ним теряется, на его место приходит другой. Как правило, для организации более-менее бесперебойной связи требуется запуск на орбиту трёх спутников. Однако процесс смены одного «дежурного» спутника другим вносит в систему дополнительные сложности, а также ряд требований к минимум трём спутникам.

    Определения круговых орбит

    Круговые орбиты можно классифицировать по нескольким параметрам. Такие термины, как Низкая околоземная орбита, Геостационарная орбита (и им подобные) указывают на отличительную черту конкретной орбиты. Краткий обзор определений круговых орбит представлен в таблице ниже.