Радиоактивность солнца. Солнечная радиация или ионизирующее излучение солнца

например +79131234567

txt fb2 ePub html

Что это

Шпаргалки на телефон - незаменимая вещь при сдаче экзаменов, подготовке к контрольным работам и т.д. Благодаря нашему сервису вы получаете возможность скачать на телефон шпаргалки по метеорологии и климатологии. Все шпаргалки представлены в популярных форматах fb2, txt, ePub , html, а также существует версия java шпаргалки в виде удобного приложения для мобильного телефона, которые можно скачать за символическую плату. Достаточно скачать шпаргалки по метеорологии и климатологии - и никакой экзамен вам не страшен!

Сообщество

Не нашли что искали?

Если вам нужен индивидуальный подбор или работа на заказа - воспользуйтесь .

Следующий вопрос »

Предмет метеорологии и её основные задачи.

Метеорология (от греч. meteora - атмосферные явления и logos - слово, учение), наука о земной атмосф

Солнечная радиация. Распределение солнечной радиации на поверхности Земли.

Электромагнитная радиация - форма материи, отличная от вещества. Частным случаем радиации является видимый свет; но к радиации относятся также и не воспринимаемые глазом гамма-лучи, рентгеновские лучи, ультрафиолетовая и инфракрасная радиация.

Радиация распространяется по всем направлениям от ее источника-излучателя в виде электромагнитных волн со скоростью света в вакууме. Как и всякие волны электромагнитные волны характеризуются длиной волны и частотой колебаний. Все тела, имеющие температуру выше абсолютного нуля, испускают радиацию. Наша планета получает радиацию от Солнца; земная поверхность и атмосфера в то же время сами излучают тепловую радиацию, но в других диапазонах длин волн. Если рассматривать температурные условия на Земле за длительные многолетние промежутки времени, то можно принять гипотезу, что Земля находится в тепловом равновесии: приход тепла от Солнца уравновешивается его потерей в космическое пространство.

Спектральный состав солнечной радиации

В спектре солнечной радиации на интервал длин волн между 0,1 и 4 мкм приходится 99% всей энергии солнечного излучения. Всего 1% остается на радиацию с меньшими и большими длинами волн, вплоть до рентгеновских лучей и радиоволн.

Видимый свет занимает узкий интервал длин волн. Однако в этом интервале заключается половина всей солнечной лучистой энергии. На инфракрасное излучение приходится 44%, а на ультрафиолетовое - 9% всей лучистой энергии.

Распределение энергии в спектре солнечной радиации до поступления ее в атмосферу в настоящее время известно достаточно хорошо благодаря измерениям со спутников. Оно достаточно близко к теоретически полученному распределению энергии в спектре абсолютно черного тела при температуре около 6000 К.

Некоторые вещества в особом состоянии излучают радиацию в большем количестве и в другом диапазоне длин волн,

чем это определяется их температурой. Возможно, например, испускание видимого света при таких низких температурах, при

которых вещество обычно не светится. Эта радиация, не подчиняющаяся законам теплового излучения, называется люминесцентной.

Люминесценция может возникнуть, если вещество предварительно поглотило определенное количество энергии и пришло в так называемое возбужденное состояние, более богатое энергией, чем энергетическое состояние при температуре вещества. При обратном переходе вещества - из возбужденного состояния в нормальное - и возникает люминесценция. Люминесценцией объясняются полярные сияния и свечение ночного неба.

Лучистая энергия Солнца - практически единственный источник тепла для поверхности Земли и ее атмосферы. Поток тепла из глубин Земли к поверхности в 5000 раз меньше тепла, получаемого от Солнца.

Часть солнечной радиации представляет собой видимый свет. Тем самым Солнце является для Земли источником не только тепла, но и света, важного для жизни на нашей планете.

Лучистая энергия Солнца превращается в тепло частично в самой атмосфере, но главным образом на земной поверхности, где она идет на нагревание верхних слоев почвы и воды, а от них и воздуха. Нагретая земная поверхность и нагретая атмосфера в свою очередь излучают невидимую инфракрасную радиацию. Отдавая радиацию в мировое пространство, земная поверхность и атмосфера охлаждаются.

Прямая солнечная радиация

Радиацию, приходящую к земной поверхности непосредственно от диска Солнца, называют прямой солнечной радиацией. Солнечная радиация распространяется от Солнца по всем направлениям. Но расстояние от Земли до Солнца так велико, что прямая радиация падает на любую поверхность на Земле в виде пучка параллельных лучей, исходящего как бы из бесконечности. Легко понять, что максимально возможное в данных условиях количество радиации получает единица площади, расположенная перпендикулярно к солнечным лучам.

Солнечная постоянная

Количественной мерой солнечной радиации, поступающей на некоторую поверхность, служит энергетическая освещенность, или плотность потока радиации, т.е. количество лучистой энергии, падающей на единицу площади в единицу времени. Энергетическая освещенность измеряется в Вт/м2. Как известно, Земля вращается вокруг Солнца по мало растянутому эллипсу, в одном из фокусов которого находится Солнце. В начале января Земля наиболее близка к Солнцу (147-Ю6 км), в начале июля - наиболее далека от него (152-106 км). Энергетическая освещенность изменяется обратно пропорционально квадрату расстояния,

Нерассеянная и непоглощенная в атмосфере прямая солнечная радиация достигает земной поверхности. Небольшая ее доля отражается от нее, а большая часть радиации поглощается земной поверхностью, в результате чего земная поверхность нагревается. Часть рассеянной радиации также достигает земной поверхности, частично от нее отражается и частично ею поглощается. Другая часть рассеянной радиации уходит вверх, в межпланетное пространство.

В результате поглощения и рассеяния радиации в атмосфере прямая радиация, дошедшая до земной поверхности, отличается от той, которая пришла на границу атмосферы. Величина потока солнечной радиации уменьшается, и спектральный состав ее изменяется, так как лучи разных длин волн поглощаются и рассеиваются в атмосфере по-разному

В атмосфере поглощается около 23% прямой солнечной радиации. Причем поглощение это избирательное: разные газы поглощают радиацию в разных участках спектра и в разной степени

На верхнюю границу атмосферы солнечная радиация приходит в виде прямой радиации. Около 30% падающей на Землю прямой солнечной радиации отражается назад в космическое пространство. Остальные 70% поступают в атмосферу.

Около 26% энергии общего потока солнечной радиации превращается в атмосфере в рассеянную радиацию. Около

2/3 рассеянной радиации приходит затем к земной поверхности.

Но это будет уже особый вид радиации, существенно отличный от прямой радиации. Во-первых, рассеянная радиация приходит

к земной поверхности не от солнечного диска, а от всего небесного свода.

Во-вторых, рассеянная радиация отлична от прямой по спектральному составу, так как лучи различных длин волн рассеиваются в разной степени.

Законы рассеяния оказываются существенно различными в зависимости от соотношения длины волны солнечного излучения и размера рассеивающих частиц.

Сильным поглотителем солнечной радиации является озон. Он поглощает ультрафиолетовую и видимую солнечную радиацию. Несмотря на то что его содержание в воздухе очень мало, он настолько сильно поглощает ультрафиолетовую радиацию в верхних слоях атмосферы, что в солнечном спектре у земной поверхности волны короче 0,29 мкм вообще не наблюдаются.

Сильно поглощает радиацию в инфракрасной области спектра диоксид углерода (углекислый газ), но его содержание в атмосфере пока мало, поэтому поглощение им прямой солнечной радиации в общем невелико.

Прямая солнечная радиация на пути сквозь атмосферу ослабляется не только поглощением, но и путем рассеяния, причем ослабляется более значительно. Рассеяние - это фундаментальное физическое явление взаимодействия света с веществом. Оно может происходить на всех длинах волн электромагнитного спектра в зависимости от отношения размера рассеивающих частиц к длине волны падающего излучения. При рассеянии частица, находящаяся на пути распространения электромагнитной волны, непрерывно «извлекает» энергию из падающей волны и переизлучает ее по всем направлениям. Таким образом, частицу можно рассматривать как точечный источник рассеянной энергии. Солнечный свет, идущий от диска Солнца, проходя через атмосферу, вследствие рассеяния меняет свой цвет. Рассеяние солнечной радиации в атмосфере имеет огромное практическое значение, так как создает рассеянный свет в дневное время. В отсутствие атмосферы на Земле было бы

светло только там, куда попадали бы прямые солнечные лучи или солнечные лучи, отраженные земной поверхностью и предметами на ней. Вследствие рассеянного света вся атмосфера днем служит источником освещения: днем светло также и там, куда солнечные лучи непосредственно не падают, и даже тогда, когда

солнце скрыто облаками.

Голубой цвет неба - это цвет самого воздуха, обусловленный рассеянием в нем солнечных лучей.

Фактор мутности

Все ослабление радиации путем поглощения и рассеяния можно разделить на две части: ослабление постоянными газами (идеальной атмосферой) и ослабление водяным паром и аэрозольными примесями. Летом запыление возрастает, а также увеличивается содержание водяного пара в атмосфере, что несколько уменьшает радиацию.

Суммарная радиация

Всю солнечную радиацию, приходящую к земной поверхности - прямую и рассеянную - называют суммарной радиацией

В облачность уменьшает суммарную радиацию. Поэтому летом приход суммарной радиации в дополуденные часы в среднем больше, чем в послеполуденные. По той же причине в первую половину года он больше, чем во вторую.

Отражение солнечной радиации. поглощенная радиация. альбедо земли

Падая на земную поверхность, суммарная радиация в большей своей части поглощается в верхнем тонком слое почвы или в более толстом слое воды и переходит в тепло, а частично отражается. Величина отражения солнечной радиации земной поверхностью зависит от характера этой поверхности. Отношение количества отраженной радиации к общему количеству радиации, падающей на данную поверхность, называется альбедо поверхности. Это отношение выражается в процентах.

Излучение земной поверхности

Верхние слои почвы и воды, снежный покров и растительность сами излучают длинноволновую радиацию; эту земную радиацию чаще называют собственным излучением земной поверхности.

Радиационный баланс земной поверхности

Разность между поглощенной радиацией и эффективным излучением называют радиационным балансом земной поверхности.

в ночные часы, когда суммарная радиация отсутствует, отрицательный радиационный баланс равен эффективному излучению.

Эффективное излучение

Встречное излучение всегда несколько меньше земного. Поэтому земная поверхность теряет тепло за счет положительной разности между собственным и встречным излучением. Разность между собственным излучением земной поверхности и встречным излучением атмосферы называют эффективным излучением Эффективное излучение, представляет собой чистую потерю лучистой энергии, а следовательно, и тепла с земной поверхности ночью.

Эффективное излучение, конечно, существует и в дневные часы. Но днем оно перекрывается или частично компенсируется поглощенной солнечной радиацией. Поэтому земная поверхность днем теплее, чем ночью, но и эффективное излучение днем больше.

Географическое распределение суммарной радиации

Распределение годовых и месячных количеств суммарной солнечной радиации по земному шару зонально: изолинии (т. е. линии равных значений) потока радиации на картах не совпадают с широтными кругами. Отклонения эти объясняются тем, что на распределение радиации по земному шару оказывают влияние прозрачность атмосферы и облачность.

Годовые количества суммарной радиации особенно велики в малооблачных субтропических пустынях. Зато над приэкваториальными лесными областями с их большой облачностью они снижены. К более высоким широтам обоих полушарий годовые количества суммарной радиации убывают. Но затем они снова растут - мало в Северном полушарии, но весьма значительно над малооблачной и снежной Антарктидой. Над океанами суммы радиации ниже, чем над сушей.

Радиационный баланс земной поверхности за год положительный повсюду на Земле, кроме ледяных плато Гренландии и Антарктиды. Это означает, что годовой приток поглощенной радиации больше, чем эффективное излучение за то же время. Но это вовсе не значит, что земная поверхность год от года становится все теплее. Избыток поглощенной радиации над излучением уравновешивается передачей тепла от земной поверхности в воздух путем теплопроводности и при фазовых преобразованиях воды (при испарении с земной поверхности и последующей конденсации в атмосфере).

Следовательно, для земной поверхности не существует радиационного равновесия в получении и отдаче радиации, но существует тепловое равновесие: приток тепла к земной поверхности как радиационными, так и нерадиационными путями равен его отдаче теми же способами.

На океанах радиационный баланс больше, чем на суше в тех же широтах. Это объясняется тем, что радиация в океанах поглощается большим слоем, чем на суше, а эффективное излучение не такое большое вследствие более низкой температуры морской поверхности, чем поверхности суши. Существенные отклонения от зонального распределения имеются в пустынях, где баланс ниже вследствие большого эффективного излучения в сухом и малооблачном воздухе. Баланс понижен также, но в меньшей мере, в районах с муссонным климатом, где в теплое время года облачность увеличивается, а поглощенная радиация уменьшается по сравнению с другими районами под той же широтой.

Географическое распределение радиационного баланса

Как известно, радиационный баланс является разностью между суммарной радиацией и эффективным излучением. Эффективное излучение земной поверхности распределяется по земному шару более равномерно, чем суммарная радиация. Дело в том, что с ростом температуры земной поверхности, т. е. с переходом к более низким широтам, растет собственное излучение земной поверхности; однако одновременно растет и встречное излучение атмосферы вследствие большего влагосодержания воздуха и более высокой его температуры. Поэтому изменения эффективного излучения с широтой не слишком велики.


  • Солнечная радиация . Распределение солнечной радиации на поверхности Земли .
    В спектре солнечной радиации на интервал длин волн между 0,1 и 4 мкм приходится 99% всей энергии солнечного излучения .


  • Радиационный тепловой баланс для поверхности Земли : Солнечная радиация приходит к поверхности Земли не
    Он является важным метеорологическим фактором, т.к. от величины его в сильной степени зависит распределение от t в почве и прилегающей к ней слоях воздуха.


  • Основные климатообразующие факторы. Солнечная радиация и общая циркуляция. Географическая широта.
    и годовой ход радиации , температуры, осадков и других величин, их изменчивость в каждой точке Земли , среднее распределение по земной поверхности
    Солнечная радиация . Распределение солнечной радиации на поверхности Земли .
    Ветер вызывает волнение водных поверхностей , многие океанические течения, дрейф льдов; он является важным фактором эрозии и рельефообразования.


  • Солнечная радиация излучение Солнца .
    Солнечная радиация . Распределение солнечной радиации на поверхности Земли .


  • Солнечная радиация : это электромагнитное и корпускулярное излучение Солнца .
    Солнечная радиация . Распределение солнечной радиации на поверхности Земли .


  • Солнечная радиация : это электромагнитное и корпускулярное излучение Солнца .
    Солнечная радиация . Распределение солнечной радиации на поверхности Земли .


  • Воздушное течение в атмосфере вызывает неравномерное распределение солнечного тепла на поверхности
    Появляется абсолютная влажность воздуха птицы низко летают над землей так как
    Основными климатообразными факторами будут: *солнечная радиация *циркуляция...

Найдено похожих страниц:10


Введение

Понятие о солнечной радиации

1 Виды солнечной радиации

2 Методы измерения радиации

Интенсивность солнечной радиации, и ее распределение

Изменение солнечной радиации

1 Поглощение солнечной радиации в атмосфере

3.2 Рассеяние солнечной радиации в атмосфере

3 Явления, связанные с рассеянием радиации

Солнечная радиация у земной поверхности

1 Влияние солнечной радиации на растительный и животный мир

2 Использование солнечной радиации человеком

Сезонные изменения солнечной радиации

Заключение


Введение

О Солнце и его энергии написаны сотни книг. О нём пишут физики и химики, астрономы и астрофизики, географы и геологи, биологи и инженеры. И в этом нет ничего удивительного, ведь Солнце является основным источником энергии на нашей планете, приводящим в движение весь механизм метеорологических и климатообразующих процессов.

Энергия Солнца, которая в основном выделяется в виде лучистой энергии, так велика, что её трудно даже себе представить. Достаточно сказать, что на Землю поступает только одна двухмиллиардная доля этой энергии, но она составляет около 2,5×1018 кал/мин. По сравнению с этим все остальные источники энергии, как внешние (излучение луны, звёзд, космические лучи), так и внутренние (внутренние тепло Земли, радиоактивное излучение, запасы каменного угля, нефти и т.д.) пренебрежительно малы.

Солнце - самая близкая к нам звезда, представляющая собой огромный светящийся газовый шар, диаметр которого примерно в 109 раз больше диаметра Земли, а его объём больше объёма Земли примерно в 1 млн 300 тыс. раз. Средняя плотность Солнца составляет около 0,25 от плотности нашей планеты .

Температура на поверхности Солнца около 6000 оК. При такой высокой температуре железо и другие металлы не просто плавятся, а превращаются в раскаленные газы. Поэтому на Солнце нет ни твердых, ни жидких веществ: там только раскаленный газ. Солнце - это огромный раскаленный газовый шар, поэтому говорить о его размерах следует условно, понимая под ними размеры видимого с Земли солнечного диска.

Внутренняя часть солнца не доступна наблюдению. Она представляет собой своеобразный атомный котёл гигантских размеров, где температура достигает 15 миллиардов градусов. Такая высокая температура внутри Солнца существует уже несколько миллиардов лет и будет существовать еще примерно столько же. Что же происходит внутри Солнца? Почему не гаснет этот гигантский костер? Астрономы, физики долго размышляли над вопросом: каким же образом миллиарды лет поддерживается очень высокая температура внутри Солнца? Большинство ученых считает, что внутри Солнца химический элемент водород превращается в другой химический элемент гелий. Частички водорода объединяются в более тяжелые частички, при этом объединении выделяется энергия в виде света и тепла, которая рассеивается Солнцем в космическом пространстве и приходит на Землю, чтобы дать жизнь всему живому .

Цель: изучить влияние солнечной радиации на географическую оболочку Земли.

Задачи:) выяснить, что такое солнечное радиация;

б) описать виды радиации;

в) изучить, как солнечная радиация влияет на растительный и животный мир;

г) привести примеры использования солнечной энергии;

д) проанализировать сезонное изменение солнечной радиации на земной поверхности.

1. Понятие о солнечной радиации

Энергия, излучаемая Солнцем, носит название солнечной радиации. Поступая на Землю, солнечная радиация в большей своей части превращается в тепло.

Солнечная радиация является практически единственным источником энергии для Земли и атмосферы. По сравнению с солнечной энергией значение других источников энергии для Земли ничтожно мало. Например, температура Земли в среднем с глубиной возрастает (примерно 1 оС на каждые 35 м). Благодаря этому поверхность Земли получает некоторое количество тепла из внутренних частей. Подсчитано, что в среднем 1см2 земной поверхности получает из внутренних частей Земли около 220 Дж в год. Это количество в 5000 раз меньше тепла, получаемого от Солнца. Некоторое количество тепла Земля получает от звезд и планет, но и она во много раз (приблизительно в 30 млн.) меньше тепла, поступающего от Солнца.

Количество энергии, посылаемой Солнцем на Землю, огромно. Так, мощность потока солнечной радиации, поступающей на площадь в 10 км2, составляет в летний безоблачный (с учетом ослабления атмосферы) 7- 9 кВт. Это больше, чем мощность Красноярской ГЭС. Количество лучистой энергии, поступающей от Солнца за 1 секунду на площадь 15×15 км (это меньше площади Ленинграда) в околополуденные часы летом, превышает мощность всех электростанций распавшегося СССР (166 млн кВт) .

Рисунок 1 - Солнце - источник радиации

.1 Виды солнечной радиации

В атмосфере солнечная радиация на пути к поверхности земли частично поглощается, а частично рассеивается и отражается от облаков и земной поверхности. В атмосфере наблюдается три вида солнечной радиации: прямая, рассеянная и суммарная.

Прямая солнечная радиация - радиация, приходящая к земной поверхности непосредственно от диска Солнца. Солнечная радиация распространяется от Солнца по всем направлениям. Но расстояние от Земли до Солнца так велико, что прямая радиация падает на любую поверхность на Земле в виде пучка параллельных лучей, исходящего как бы из бесконечности. Даже весь земной шар в целом так мал в сравнении с расстоянием до Солнца, что всю солнечную радиацию, падающую на него, без заметной погрешности можно считать пучком параллельных лучей.

На верхнюю границу атмосферы приходит только прямая радиация. Около 30 % падающей на Землю радиации отражается в космическое пространство. Кислород, азот, озон, диоксид углерода, водяные пары (облака) и аэрозольные частицы поглощают 23 % прямой солнечной радиации в атмосфере. Озон поглощает ультрафиолетовую и видимую радиацию. Несмотря на то, что его содержание в воздухе очень мало, он поглощает всю ультрафиолетовую часть радиации (это примерно 3 %). Таким образом, у земной поверхности ее вообще не наблюдается, что очень важно для жизни на Земле.

Прямая солнечная радиация на пути сквозь атмосферу также рассеивается. Частица (капля, кристалл или молекула) воздуха, находящаяся на пути электромагнитной волны, непрерывно «извлекает» энергию из падающей волны и переизлучает ее по всем направлениям, становясь излучателем энергии.

Около 25 % энергии общего потока солнечной радиации проходя через атмосферу, рассеивается молекулами атмосферных газов и аэрозолем и превращается в атмосфере в рассеянную солнечную радиацию. Таким образом рассеянная солнечная радиация -солнечная радиация, претерпевшая рассеяние в атмосфере. Рассеянная радиация приходит к земной поверхности не от солнечного диска, а от всего небесного свода. Рассеянная радиация отлична от прямой по спектральному составу, так как лучи различных длин волн рассеиваются в разной степени.

Так как первоисточником рассеянной радиации является прямая солнечная радиация, поток рассеянной зависит от тех же факторов, которые влияют на поток прямой радиации. В частности, поток рассеянной радиации возрастает по мере увеличение высоты Солнца и наоборот. Он возрастает также с увеличением в атмосфере количества рассеивающих частиц, т.е. со снижением прозрачности атмосферы, и уменьшается с высотой над уровнем моря в связи с уменьшение количества рассеивающих частиц в вышележащих слоях атмосферы. Очень большое влияние на рассеянную радиацию оказывают облачность и снежный покров, которые за счет рассеяния и отражения падающей на них прямой и рассеянной радиации и повторного рассеяния их в атмосфере могут в несколько раз увеличить рассеянную солнечную радиацию.

Рассеянная радиация существенно дополняет прямую солнечную радиацию и значительно увеличивает поступление солнечной энергии на земную поверхность. Особенно велика ее роль в зимнее время в высоких широтах и в других районах с повышенной облачностью, где доля рассеянной радиации может превышать долю прямой. Например, в годовой сумме солнечной энергии на долю рассеянной радиации приходится в Архангельске - 56 %, в Санкт-Петербурге - 51 %.

Суммарная солнечная радиация - это сумма потоков прямой и рассеянной радиаций, поступающих на горизонтальную поверхность. До восхода и после захода Солнца, а также днем при сплошной облачности суммарная радиация полностью, а при малых высотах Солнца преимущественно состоит из рассеянной радиации. При безоблачном или малооблачном небе с увеличением высоты Солнца доля прямой радиации в составе суммарной быстро возрастает и в дневные часы поток ее многократно превышает поток рассеянной радиации. Облачность в среднем ослабляет суммарную радиацию (на 20- 30 %), однако при частичной облачности, не закрывающей солнечного диска, поток ее может быть больше, чем при безоблачном небе. Существенно увеличивает поток суммарной радиации снежный покров за счет увеличения потока рассеянной радиации.

Суммарная радиация, падая на земную поверхность, большей частью поглощается верхним слоем почвы или более толстым слоем воды (поглощенная радиация) и переходит в тепло, а частично отражается (отраженная радиация) .

1.2 Методы измерения радиации

солнечный радиация атмосфера животный

Для измерения прямой и рассеянной солнечной радиации, радиационного баланса и других видов радиации существует много приборов как с визуальными отчетами, так и с автоматической регистрацией. Ограничимся рассмотрением общих принципов их построения.

Приборы для измерения прямой солнечной радиации называют пиргелиометрами и актинометрами, для измерения рассеянной радиации - пиранометрами, для измерения радиационного баланса - балансомерами.

Для измерения радиации применяется зачерненная металлическая пластинка, которая по своим поглощающим свойствам практически идентична абсолютному черному телу, т.е. поглощает и превращает в тепло всю падающую на нее радиацию. Во многие приборы входят, кроме того, пластинки с белой поверхностью, почти полностью отражающие падающую радиацию.

В компенсационном пиргелиометре Ангстрема зачерненная металлическая пластинка выставляется на Солнце, а другая такая же пластинка остается в тени. Между пластинками возникает разность температур. Эта разность температур передается спаям термоэлемента, приклеенным (с изоляцией) к пластинкам, и тем самым возбуждает термоэлектрический ток. Через затемненную пластинку пропускается ток от батареи, пока пластинка не нагреется до той же температуры, до которой нагрелась солнечными лучами первая пластинка; тогда термоэлектрический ток исчезает. По силе пропущенного «компенсирующего» тока можно определить с помощью Джоуля-Ленца количество тепла, полученному от Солнца первой пластинкой. Отсюда можно определить величину солнечной радиации. Есть и другие типы пиргелиометров.

В термоэлектрическом актинометре Савинова-Янишевского приемная часть представляет собой тонкий металлический зачерненный диск. К нему через изоляцию приклеены нечетные спаи термобатареи. Четные спаи термобатареи приклеены также через изоляцию к медному кольцу в корпусе прибора. Под влиянием солнечной радиации возникает электрический ток, по силе которого определяют интенсивность радиации. Для этого нужен переводной множитель прибора, который определяется путем сравнения с абсолютным прибором-пиргелиометром.

В пиранометре приемная часть чаще всего представляет собой батарею термоэлементов, например, из манганина и константана с зачерненными и белыми спаями. Приемная часть прибора должна иметь горизонтальное положение, чтобы воспринимать рассеянную радиацию со всего небесного свода. От прямой солнечной радиации он затенен экраном, а от встречного излучение атмосферы защищен стеклянным колпаком. Под действием рассеянной радиации черные и белые спаи нагреваются неодинаково, и возникает термоэлектрический ток, по силе которого определяют значение радиации (заранее устанавливается переводной множитель прибора). При измерениях суммарной радиации пиранометр не затеняют от прямых солнечных лучей.

Радиационный баланс определяется термоэлектрическим балансомером, в котором одна зачерненная приемная пластинка направлена вверх, а другая - вниз, к земной поверхности. Разница в нагревании пластинок позволяет определить величину радиационного баланса. Ночью она равна величине эффективного излучения.

Для автоматической регистрации измерений термоэлектрический ток, возникающий в актинометре, пиранометре, балансомере, подают на самопишущий электронный потенциометр. Изменения силы тока записываются на движущейся бумажной ленте. При этом актинометр должен автоматически вращаться так, чтобы его приемная часть следовала за Солнцем, а пиранометр должен быть всегда затенен от прямой радиации особой кольцевой защитой .

12

Пиргелиометр; 2 - актинометр; 3 - пиранометр

Рисунок 2 - Приборы для измерения солнечной радиации

Таким образом, используя методы измерения солнечной радиации, мы можем определить множество показателей, т.к. интенсивность солнечной радиации, отраженную радиацию, величину эффективного излучения, составляющие теплового баланса и т.д.

2. Интенсивность солнечной радиации, и ее распределение

Интенсивность солнечной радиации перед вступлением ее в атмосферу (обычно говорят: «на верхней границе атмосферы» или «в отсутствие атмосферы») называют солнечной постоянной. Смысл слова постоянная состоит здесь в том, что эта величина не зависит от поглощения и рассеяния радиации в атмосфере. Она относится к радиации, на которую атмосфера еще не повлияла. Солнечная постоянная зависит, таким образом, только от излучательной способности Солнца и от расстояния между Землей и Солнцем.

Земля вращается вокруг Солнца по мало растянутому элипсу, в одном из фокусов которого находится Солнце. В начале января она наиболее близка к Солнцу (147 млн км), в начале июля наиболее далека от него (152 млн км). Так как интенсивность радиации меняется обратно пропорциональна квадрату расстояния, то солнечная постоянная в течении года меняется на ±3,5 %. При среднем расстоянии Земли от Солнца солнечная постоянная, по новейшим определениям, с использованием ракетных измерений, равна 2,00 ±0,04 кал/см2 мин. Однако за стандартное ее значение по международному соглашению принята величина 1,98 кал/см2 мин. Интенсивность солнечной радиации в 2 кал на 1 см2 в 1 минуту дает такое большое количество тепла в течение года, что его хватило бы, чтобы расплавить слой льда в 35 метров толщиной, если бы такой слой покрывал всю земную поверхность.

Меняется ли, и на сколько существенно, солнечная постоянная в течение времени, независимо от изменения расстояния между Солнцем и Землей? Иначе говоря, меняется ли с течением времени излучение Солнца? Несомненно, что за время существования Солнца солнечная постоянная должна была меняться. Более спорным вопросом является вопрос, менялась ли она существенно на протяжении геологической истории Земли. Наконец, еще не известно, колеблется ли солнечная постоянная, и на сколько, изо дня в день и из года в год. Однако если такие колебания и существуют, то они настолько малы, что лежат в пределах точности определений солнечной постоянной .

3. Изменение солнечной радиации

Проходя сквозь атмосферу, солнечная радиация частично рассеивается атмосферными газами и аэрозольными примесями к воздуху и переходит в особую форму рассеянной радиации. Частично же она поглощается молекулами атмосферных газов и примесями к воздуху и переходит в теплоту, идет на нагревание атмосферы.

Нерассеянная и непоглощенная в атмосфере прямая солнечная радиация достигает земной поверхности. Она частично отражается от земной поверхности, а в большей степени поглощается ею и нагревает ее. Часть рассеянной радиации также достигает земной поверхности, частично от нее отражается и частично ею поглощается. Другая часть рассеянной радиации уходит вверх, в межпланетное пространство.

В результате поглощения и рассеяния радиации в атмосфере прямая радиация, дошедшая до земной поверхности, изменена в сравнении с тем, что было на границе атмосферы. Интенсивность радиации уменьшается, а спектральный состав ее изменяется, так как лучи разных длин волн поглощаются и рассеиваются в атмосфере по-разному.

В результате поглощения и рассеяния радиации в атмосфере прямая радиация, дошедшая до земной поверхности, изменена в сравнении с тем, что было на границе атмосферы. Интенсивность радиации уменьшается, а спектральный состав ее изменяется, так как лучи разных длин волн поглощаются и рассеиваются в атмосфере по-разному .


В атмосфере поглощается около 23 % прямой солнечной радиации. Причем поглощение это избирательное: разные газы поглощают радиацию в разных участках спектра и в разной степени. Основным поглотителем радиации в коротковолновой области спектра является азот и озон, в длинноволновой - водяной пар и углекислый газ.

Азот поглощает радиацию только очень малых длин волн в ультрафиолетовой части спектра. Энергия солнечной радиации в этом участке спектра совершенно ничтожна, поэтому поглощение азотом практически не отражается на потоке солнечной радиации. В несколько большей степени, но все же очень мало поглощает солнечную радиацию кислород в двух узких участках видимой части спектра и в ультрафиолетовой его части.

Более сильным поглотителем солнечной радиации является озон. Несмотря на очень малое содержание его в атмосфере, он полностью поглощает солнечную радиацию с длиной волны менее 0,29 мкм, вследствие чего в спектре солнечной радиации у земной поверхности такие волны не наблюдаются. Ультрафиолетовые волны, в особенности наиболее короткие, биологически очень активны и в избыточных количествах оказывают вредное или даже губительное влияние на живые организмы. Слой атмосферного озона является своеобразным защитным экраном, «биологическим щитом», предохраняющим жизнь на Земле. Поглощением части ультрафиолетовой радиации Солнца стратосферным озоном объясняется характерное для стратосферы распределение температуры с высотой и сравнительно высокие температуры воздуха в этом слое.

Кроме ультрафиолетовой радиации, озон поглощает, хотя и значительно слабее, радиацию некоторых длин волн в видимой и инфракрасной областях спектра. Общее поглощение солнечной радиации озоном достигает 3 % прямой солнечной радиации.

В длинноволновой области спектра наибольшую долю радиации поглощает водяной пар. Сильным поглотителем инфракрасной радиации является также и углекислый газ, однако в связи с малым содержанием его в атмосфере общее количество поглощенной им радиации невелико.

Значительное количество как коротковолновой, так и длинноволновой радиации поглощают облака и различные атмосферные аэрозоли, особенно при сильном замутнении атмосферы (в городах, при сильных лесных и торфяных пожарах и т.д.)

В целом на поглощение водяным паром и на аэрозольное поглощение приходится около 15 %, остальные 5 % поглощаются облаками.

В каждом отдельном месте поглощение изменяется с течение времени в зависимости как от переменного содержания в воздухе поглощающих субстанций, главным образом водяного пара, облаков и пыли, так и от высоты Солнца над горизонтом, т.е. от толщины слоя воздуха, проходимого лучами на пути к Земле .

.2 Рассеяние солнечной радиации в атмосфере

Прямая солнечная радиация на пути сквозь атмосферу ослабляется не только поглощением, но и путем рассеяния, причем ослабляется более значительно. Рассеяние - это фундаментальное физическое явление взаимодействия света с веществом. Оно может происходить на всех длинах волн электромагнитного спектра в зависимости от отношения размера рассеивающих частиц к длине волны падающего излучения. При рассеянии частица, находящаяся на пути распределения электромагнитной волны, непрерывно «извлекает» энергию из падающей волны и переизлучает ее по всем направлениям. Таким образом, частицу можно рассматривать как точечный источник рассеянной энергии. Следовательно, рассеянием называется преобразование частицы прямой солнечной радиации, которая до рассеяния распространяется в виде параллельных лучей в определенном направлении, в радиацию, идущую по всем направлениям. Рассеяние происходит в оптически неоднородном атмосферном воздухе, содержащем мельчайшие частицы жидких и твердых примесей - капли, кристаллы, мельчайшие аэрозоли, т.е. в среде, где показатель преломления изменяется от точки к точке. Но оптически неоднородной средой является и чистый, свободный от примесей воздух, так как в нем вследствие теплового движения молекул постоянно возникают сгущения и разрежения, колебания плотности. Встречаясь с молекулами и примесями в атмосфере, солнечные лучи теряют прямолинейное направление распространения, рассеивается. Радиация распространяется от рассеивающих частиц, таким образом, как если бы они сами были излучателями.

Таким образом, около 26 % энергии общего потока солнечной радиации превращается в атмосфере в рассеянную радиацию. Около 2/3 рассеянной радиации приходит затем к земной поверхности .

.3 Явления, связанные с рассеянием радиации

Одним из примитивных примеров, связанных с рассеянием радиации, который мы можем наблюдать почти каждый день - это голубой цвет неба. Голубой цвет неба - это цвет самого воздуха, обусловленный рассеянием в нем солнечных лучей. Воздух прозрачен в тонком слое, как прозрачна в тонком слое вода. Но в мощной толще атмосферы воздух имеет голубой цвет подобно тому, как вода уже в сравнительно малой толще

(несколько метров) имеет зеленый цвет. Так как молекулярное рассеяние света происходит обратно пропорционально, то в спектре рассеянного света, посылаемого небесным сводом, максимум энергии смещен на голубой цвет. Таким образом, небесный свод имеет голубой цвет. Голубой цвет воздуха можно видеть не только глядя на небесный свод, но и рассматривая отдельные предметы, которые кажутся окутанными голубоватой дымкой. С высотой, по мере уменьшения плотности воздуха, т.е. количества рассеивающих частиц, цвет неба становится темнее и переходит в густо-синий, а в атмосфере - в черно-фиолетовый. По свидетельству космонавтов, на высоте 300 км цвет неба черный. Увеличение доли рассеянных фиолетовых лучей с высотой хорошо видно в горах, которые в чистом воздухе кажутся сине-фиолетовыми.

Чем больше в воздухе примесей более крупных размеров, чем молекулы воздуха, тем больше доля длинноволных лучей в спектре солнечной радиации и тем белесоватее становится окраска небесного свода. Когда диаметр частиц тумана, облаков и аэрозолей становится более 1- 2 мкм, то лучи всех длин волн уже не рассеиваются, а одинаково диффузно отражаются; поэтому отдельные предметы при тумане и пыльной мгле заволакиваются уже не голубой, а белой или серой завесой. Поэтому же облака, на которые падает солнечный (т.е. белый) свет, кажутся белыми.

Рисунок 3 - Голубой цвет неба

Солнечный свет, идущий от диска Солнца, проходя через атмосферу, вследствие рассеяния меняет свой цвет. Благодаря рассеянию больше всего понижается энергия наиболее коротких длин волн видимой части спектра - синих и фиолетовых, поэтому «уцелевший» от рассеяния прямой солнечный свет становится желтоватым. Солнечный диск кажется тем желтее, чем он ближе к горизонту, т.е. чем длиннее путь лучей через атмосферу и, следовательно, чем больше рассеяние. У горизонта Солнце становится почти красным, особенно когда в воздухе много пыли и мельчайших продуктов конденсации (капель или кристаллов). Точно так же и солнечный свет, отраженный облаками, рассеиваясь по пути к земной поверхности, становится беднее синими лучами. Поэтому, когда облака близки к горизонту и путь отраженных от них лучей света, проходящий сквозь атмосферу к наблюдателю, велик, они приобретают вместо белой желтоватую окраску.

Рисунок 4 - Желтоватая окраска облаков

Рассеяние солнечной радиации в атмосфере имеет огромное практическое значение, так как создает рассеянный свет в дневное время. В отсутствие атмосферы на Земле было бы светло только там, куда попадали бы прямые солнечные лучи или солнечные лучи, отраженные земной поверхностью и предметами на ней. Вследствие же рассеянного света вся атмосфера днем служит источником освещения: днем светло также и там, куда солнечные лучи непосредственно не падают, и даже тогда, когда Солнце скрыто облаками .

Рисунок 5 - Рассеянный свет в дневное время

4. Солнечная радиация у земной поверхности

Как нам уже известно, прямая солнечная радиация, при прохождении атмосферы, до земной поверхности доходит ослабленной атмосферным поглощением и рассеянием. Кроме того, в атмосфере всегда есть облака, и прямая солнечная радиация часто вообще не достигает земной поверхности, поглощаясь, рассеиваясь и отражаясь обратно облаками. Облачность может уменьшать приток прямой радиации в широких пределах. Например, в Ташкенте в малооблачном августе теряется вследствие наличия облаков всего 20 % прямой солнечной радиации, а во Владивостоке с его муссонным климатом потеря прямой радиации вследствие облачности летом составляет 75 %. В Санкт-Петербурге даже в среднем за год облака не пропускают к земной поверхности 65 % прямой радиации.

Таблица 1 - Средний приток солнечной радиации в Северном полушарии на горизонтальную поверхность в дни равноденствий и солнцестояний

ДеньШирота, град.0- 1010- 2020- 3030- 4040- 5050- 6060- 90На верхней границе атмосферы21/XII 21/III 21/VI 23/IX0,383 0,432 0,404 0,4250,324 0,420 0,440 0,3920,260 0,386 0,463 0,3880,191 0,355 0,477 0,3510,121 0,308 0,481 0,3040,055 0,250 0,477 0,2460,004 0,147 0,491 0,145Прямая радиация у земной поверхности21/XII 21/III 21/VI 23/IX0,114 0,133 0,101 0,1190,112 0,156 0,118 0,1130,094 0,144 0,151 0,1400,057 0,112 0,163 0,1280,025 0,081 0,128 0,0910,009 0,068 0,111 0,0550,001 0,038 0,093 0,019Рассеянная радиация у земной поверхности21/XII 21/III 21/VI 23/IX0,045 0,075 0,073 0,0750,055 0,073 0,079 0,0720,046 0,069 0,0865 0,0680,036 0,065 0,087 0,0640,024 0,058 0,088 0,0560,011 0,046 0,035 0,0450,001 0,033 0,107 0,034Из данной таблицы можно сделать вывод, что действительные количества прямой солнечной радиации, достигающие земной поверхности в течение того или иного времени, будут значительно меньше, чем количества, рассчитанные для границы атмосферы. Распределение же их по Земному шару будет более сложным, так как степень прозрачности атмосферы и условия облачности весьма изменчивы в зависимости от географической обстановки.

Однако при достижении земной поверхности большая часть потока суммарной радиации, поступающего на земную поверхность, поглощается верхним слоем почвы, воды и растительностью; при этом лучистая энергия превращается в тепло, нагревая поглощающие слои. Остальная часть потока суммарной радиации отражается земной поверхностью, образуя отраженную радиацию. Почти весь поток отраженной радиации проходит атмосферу насквозь и уходит в мировое пространство, однако некоторая доля его в атмосфере рассеивается и частично возвращается на земную поверхность, усиливая рассеянную радиацию, следовательно, и суммарную .

Отражательная способность различных поверхностей называется альбедо. Оно представляет собой отношение потока отраженной радиации ко всему потоку суммарной радиации, падающему на данную поверхность. Таким образом, земной поверхностью отражается часть потока суммарной радиации, а часть поглощается и превращается в тепло.

Альбедо различных поверхностей суши зависит главным образом от цвета и шероховатости этих поверхностей. Темные и шероховатые поверхности имеют меньшее альбедо, чем светлые и гладкие. Альбедо почв уменьшается с возрастание влажности, так как цвет их при этом становится темным.

Таблица 1 - Значение альбедо для некоторых естественных поверхностей

ПоверхностьАльбедо, в процентахПоверхностьАльбедо, в процентахСвежий сухой снег80- 95Луга15- 25Загрязненный снег40- 50Поля ржи и пшеницы10- 25Темные почвы5- 15Хвойные леса10- 15Сухие песчаные почвы25- 45Лиственные леса15- 20

Альбедо водных поверхностей в среднем меньше, чем альбедо поверхности суши, и оно очень сильно зависит от высоты Солнца. Наименьшее альбедо наблюдается при отвесном падении солнечных лучей (2- 5 %), наименьшая - при малых высотах Солнца (50- 70 %). Подобным же образом, но значительно слабее, изменяется в зависимости от высоты Солнца и физического состояния альбедо других естественных поверхностей, в связи с чем в суточном ходе наибольшие значения его наблюдаются утром и вечем, наибольшие - в полуденные часы.

Очень велика отражательная способность верхней поверхности облаков, особенно при большой их мощности. В среднем альбедо облаков около 50- 60 %, в отдельных случаях - более 80- 85 %.

В умеренных и высоких широтах альбедо сильно изменяется в годовом ходе, так как из-за образования снежного покрова зимой она значительно больше (50- 80 %), чем летом.

Отношение уходящей в космическое пространство отраженной и рассеянной радиации ко всему потоку солнечной радиации, поступающей в атмосферу, называют планетарным альбедо Земли. В среднем оно составляет около 30 %, причем большая часть его обусловлена отражением солнечной радиации облаками .

4.1 Влияние солнечной радиации на растительный и животный мир

Солнце оказывает значительное влияние не только на растительный и животный мир, но и на человека. Некоторые люди просыпаются и бодрствуют только тогда, когда светит Солнце (это касается и большинства млекопитающих, земноводных и даже большинства рыб). Продолжительность солнечного дня оказывает влияние на жизнедеятельность организмов на Земле. В частности, зимой и осенью, когда Солнце в Северном полушарии стоит низко над горизонтом, и продолжительность светового дня мала и мало поступление солнечного тепла, природа увядает и засыпает - деревья сбрасывают листья, многие животные впадают на длительный срок в спячку (медведи, барсуки) или же сильно снижают свою активность. Вблизи полюсов даже во время лета поступает мало солнечного тепла, из-за этого растительность там скудная -причина унылого тундрового пейзажа, и мало какие животные могут проживать в таких условиях. Весной же вся природа просыпается, трава распускается, деревья выпускают листья, появляются цветы, оживает животный мир. И всё это благодаря одному единственному Солнцу. Его климатическое влияние на Землю бесспорно. Именно благодаря неравномерному поступлению солнечной энергии в разные районы Земли и в разные времена года на Земле сформировались климатические пояса .

Так же без Солнца не мог бы протекать такой химический процесс, как фотосинтез. В зелёных листьях растений содержится зелёный пигмент хлорофилл - этот пигмент является важнейшим катализатором на Земле. С его помощью происходит реакция диоксида углерода и воды-фотосинтез, и одним из продуктов этой реакции является кислород - элемент, который необходим для жизни почти всему живому на Земле и глобально повлиял на эволюцию нашей планеты - в частности, радикально изменился состав минералов. Реакция воды и углекислого газа происходит с поглощением энергии, поэтому в темноте фотосинтез не происходит. Фотосинтез, преобразуя солнечную энергию и производя при этом кислород, дал начало всему живому на Земле. При этой реакции образуется глюкоза, которая является важнейшим сырьём для синтеза целлюлозы, из которой состоят все растения. Поедая растения, в которых за счёт солнца накоплена энергия, существуют и животные. Растения Земли поглощают и усваивают всего около 0,3 % энергии излучения Солнца, падающей на земную поверхность. Но и этого, на первый взгляд, мизерного количества энергии достаточно, чтобы обеспечить синтез огромного количества массы органического вещества биосферы.

Таким образом, Солнце является главным источником жизни на Земле .

4.2 Использование солнечной радиации человеком

Вопрос о возможности непосредственного использования солнечной энергии, интересовавший людей еще в древности, в последние годы становится все более актуальным. Проблемами технического использования солнечной радиации занимается гелиотехника, которой сейчас во всем мире уделяется большое внимание. Энергию Солнца можно использовать для технических и бытовых целей: отопления и освещения, опреснения воды, сушки фруктов и овощей и др. Чтобы достигнуть рентабельности солнечных установок, надо размещать их там, где приход солнечной энергии значителен и, главное, где имеется достаточное количество солнечных (безоблачных) дней в году.

Использование солнечной энергии в современной практике осуществляется путем преобразования ее в тепловую и электрическую энергию.

Быстрое уменьшение запасов горючих ископаемых (уголь, нефть, газ) и загрязнение окружающей природной среды при их сжигании заставляет искать более эффективные источники энергии. Прежде всего - это энергия Солнца. Для нас Солнце - ближайший термоядерный реактор-исполин, действующий уже миллиарды лет. Только к пустыне Каракумы поступает за год столько солнечной радиации, сколько содержит 3,5 млрд т нефти. Научившись утилизировать хотя бы 20 % этой радиации, мы могли бы получить с каждого участка площадью 4- 5 тысяч км2 по 1300 миллиардов кВт/ч.

Солнце - не только неисчерпаемый, но и абсолютно чистый источники энергии: оно не дает никаких вредных выбросов. Нет и так называемых тепловых загрязнений, способных «испортить» микроклимат местности, перегреть биосферу в глобальных масштабах, что может явиться следствием неограниченного использования термоядерной энергии.

В настоящее время выделяют четыре направления в использовании солнечной энергии: политехническое, фотоэлектрическое, биологическое и химическое.

Первое направление - это преобразование солнечной энергии в тепловую.

Второе направление - преобразование солнечной энергии в электрическую при помощи фотоэлементов - получило широкое применение в космонавтике (фотоэлектрические солнечные батареи).

Третье направление - разработка биологических систем.

Четвертое направление - разложение воды солнечным светом на кислород и водород.

Рисунок 8 - Солнечная электростанция использует солнечную радиацию для выработки электроэнергии

Во многих отраслях народного хозяйства большую роль играет радиационный режим. Для научного ведения сельского хозяйства необходимо знать действительные суммы радиации, приходящей на земную поверхность в вегетационный период и во все остальные периоды года. Для этого следует учитывать характер деятельной поверхности, наличие склонов, холмов и пр., так как количество радиации, поглощенной почвой, зависит от угла падения лучей и альбедо поверхности.

Солнечная радиация широко используется в лечебных целях. Поэтому в курортологии для правильного выбора времени и дозы облучения больных необходимо знать суточный и годовой ход прямой и рассеянной радиации, их суммы и максимальные значения. Для получения этих сведений на некоторых курортах оборудованы специальные актинометрические станции.

При проектировании городов следует располагать здания таким образом, чтобы обеспечить наиболее благоприятное их освещение солнечными лучами. Необходимо знать суммы радиации, поступающей на вертикальные стены различной ориентации. При этом следует учитывать, что на них поступает не только прямая и рассеянная радиация, но и радиация, отраженная от прилегающих участков земной поверхности и от других близко расположенных зданий. Максимальные суммы солнечной радиации не всегда приходятся на летние месяцы и на южные стены. В частности, приход прямой радиации на южные стены наблюдаются в течение всего года, но максимум ее приходится на весну. С увеличением широты годовые суммы поступающей радиации уменьшается.

Северные стены облучаются с марта по сентябрь, а максимум приходится на июнь - июль. В эти месяцы с увеличением широты суточные и месячные суммы поступающей радиации увеличиваются. Приход радиации на восточные и западные стены зависит главным образом от суточного и годового хода облачности .

5. Сезонные изменения солнечной радиации

Нам уже известно, как меняется в течении года солнечная постоянная и, стало быть, количество радиации, приходящее к Земле. Если определять солнечную постоянную для фактического расстояния Земли от Солнца, то при среднем годовом значении 1,98 кал/см2 мин она будет равна 2,05 кал/см2 мин в январе и 1,91 кал/см2 мин в июле.

Стало быть, северное полушарие за летний день получает на границе атмосферы несколько меньше радиации, чем южное полушарие за свой летний день.

Шарообразность Земли и наклон плоскости экватора к полюсу эклиптики (23,5о) создает сложное распределение притока радиации по широтам на границе атмосферы и его изменения в течение года.

Рисунок 9 - Приток солнечной радиации на горизонтальную поверхность в зимнее и летнее полугодия и за весь год в зависимости от географической широты

Из рисунка видно, что за год количество приходящей солнечной радиации меняется от 318 ккал на экваторе до 133 ккал на полюсе.

Зимой приток радиации очень быстро убывает от экватора к полюсу, летом - гораздо медленнее. При этом максимум летом наблюдается на тропике, а от тропика к экватору приток радиации несколько убывает.

Малая разница в притоке радиации между тропическими и полярными широтами летом объясняется тем, что высоты Солнца в полярных широтах летом ниже, чем в тропиках, но зато велика продолжительность дня. В день летнего солнцестояния полюс, поэтому получал бы в отсутствии атмосферы больше радиации, чем экватор. Однако у земной поверхности в результате ослабления радиации атмосферой, отражения ее облачностью и пр. летний приток радиации в полярных широтах существенно меньше, чем в более низких широтах.

Расчеты показывают, что на верхней границе атмосферы вне тропиков имеется в годовом ходе один максимум радиации, приходящийся на время летнего солнцестояния, и один минимум, приходящийся на время зимнего солнцестояния. Но между тропиками приток радиации имеет два максимума в год, приходящиеся на те сроки, когда Солнце достигает наибольшей полуденной высоты. На экваторе это будет в равноденствий, в других внутритропических широтах - после весеннего и перед осенним равноденствием, отодвигаясь тем больше от сроков равноденствий, чем больше широта. Амплитуда годового хода на экваторе мала, внутри тропиков невелика; в умеренных и высоких широтах она значительно больше .

Заключение

Из всего вышесказанного можно сделать вывод, что Солнце является источником жизни всего земного. Оно играет огромную роль в протекании химических процессов на Земле. Солнце испаряет воду с океанов, морей, с земной поверхности. Оно превращает эту влагу в водяные капли, образуя облака и туманы, а затем заставляет ее снова падать на Землю в виде дождя, снега, росы или инея, создавая, таким образом, гигантский круговорот влаги в атмосфере.

Солнечная энергия является источником общей циркуляции атмосферы и циркуляции воды в океанах. Она как бы создает гигантскую систему водяного и воздушного отопления нашей планеты, перераспределяя тепло по земной поверхности.

Солнечный свет, попадая на растение, вызывает у него процесс фотосинтеза, определяет рост и развитие растений; попадая на почву, он превращается в тепло, нагревает ее, формирует почвенный климат, давая тем самым жизненную силу, находящимся в почве, семенам растений, микроорганизмам и населяющим её живым существам, которые без этого тепла пребывали бы в состоянии анабиоза (спячки).

Таким образом, можно сделать вывод, что Солнце - это основной источник энергии на Земле и, первопричина, создавшая большинство других энергетических ресурсов нашей планеты, таких, как запасы каменного угля, нефти, газа, энергии ветра и падающей воды, электрической энергии и т. д.

Список использованных источников

1 Большой информационный архив [Электронный ресурс] // Солнечная радиация, какой она нам представляется. - 2010. - 2 марта. - URL: #"justify">2 Гонтарук Т.И. Я познаю мир: энциклопедия. - М.: ООО «Издательство АСТ», 2003. - 445 с.

3 Матвеев Л.Т. Курс общей метеорологии. Физика атмосферы: учебное пособие для студентов вузов. - 2-е изд., испр. и доп. - Л., 1994 - 751 с.

4 Мировая тема - популярное издание [Электронный ресурс] // Солнце - источник радиации. - 2015. - 14 января. - URL: <#"justify">12 Кондратьев К.Я., Биненко В.И., Мельникова В.И. Метеорология и гидрология: учебное пособие. - М., 1996. - 174 с.

13 Солнечная радиация [Электронный ресурс] / Голубой цвет неба. - Москва, 2015. - URL: #"justify">16 Гуральник И.И., Дубинский Г.П., Ларин В.В., Мамиконова С.В. Метеорология. - 2-е изд., перераб. - Л.: Гидрометеоиздат, 1982. - 440 с.

Будыко М.И. Метеорология и гидрология: учебное пособие. - М., 1998. - 129 с.

18 Биофайл - Научно-информационный журнал [Электронный ресурс] // Влияние Солнца на планету Земля. - 2014. - 4 апреля. - URL: http://biofile.ru/kosmos/4362.html (дата обращения: 3.03.2015).

Захаровская Н.Н., Ильинич В.В. Метеорология и климатология: учебное пособия для студентов высш. учеб. заведений. - М.: КолосС, 2005. - 127 с.

Информационное агентство региональной политики [Электронный ресурс] / Солнечная электростанция. - М, 2015. - URL: http://goo.gl/OqpsCs (дата обращения 25.03.2015).

Учебные материалы [Электронный ресурс] / Приток солнечной радиации. - 2015. - 24 ноября. - URL: http://goo.gl/2iaXkt (дата обращения 27.03.2015).

Человечество и окружающая среда

Литосфера - твердая оболочка Земли, источник минерального сырья и ископаемого топлива, почвенного...
"Тепловой вклад" человеческой деятельности составляет в н. в.0.006% солнечной радиации. Следствием этого станет повышение температуры планеты на 10С.

Охрана атмосферного воздуха

И то, и другое зависти от климатических условий, различных географических районов земли.
...диссоциации молекул кислорода под воздействием солнечной радиации в верхних слоях атмосферы на высоте 10-50 км. На его концентрацию также...


Солнечная радиация и ее влияние на природные и хозяйственные процессы

Вы можете узнать стоимость помощи в написании студенческой работы.

Помощь в написании работы, которую точно примут!

Введение

Глава 1. Теоретические аспекты солнечной радиации

1 Поглощение и рассеяние прямой солнечной радиации в атмосфере

2 Рассеянная солнечная радиация

3 Суммарная радиация и радиационный баланс

Глава 2. Влияние солнечной радиации на природные и хозяйственные процессы

1 Солнечная радиация и климат

2 Воздействие солнечной радиации на развитие растений и животных

Заключение

Список литературы

Введение

Под солнечной радиацией понимается весь испускаемый Солнцем поток радиации, который представляет собой электромагнитные колебания различной длины волны. В гигиеническом отношении особый интерес представляет оптическая часть солнечного света, которая занимает диапазон от 280-2800 нм. Более длинные волны - радиоволны, более короткие - гамма-лучи, ионизирующее излучение не доходят до поверхности Земли, потому что задерживаются в верхних слоях атмосферы, в озоновом слое в частности. Солнечная радиация является главным источником энергии для всех физико-географических процессов, происходящих на земной поверхности и в атмосфере.

Изучение данной проблемы имеет большое значение, потому что вся живая природа чутко реагирует на сезонные изменения окружающей температуры, на интенсивность солнечного излучения - весной покрываются листвой деревья, осенью листва опадает, затухают обменные процессы, многие животные впадают в спячку и т.д. Человек не является исключением. На протяжении года у него меняется интенсивность обмена, состав клеток тканей, причем эти колебания различны в разных климатических поясах. Так, в южных районах содержание гемоглобина и количество эритроцитов, а также максимальное и минимальное давление крови в холодный период возрастают на 20 процентов по сравнению с теплым временем. В условиях Севера наибольший процент гемоглобина найден у большинства обследованных жителей в летние месяцы, а наименьший - зимой и в начале весны. В последнее время в связи с резким возрастанием загрязнения окружающей природной среды, усиления содержания в атмосфере углекислого газа, повышения радиационного фона значительно возросло число спонтанных, стихийных, вредных мутаций как у животных, так и у человека.

Курсовая работа "Солнечная радиация и ее влияние на природные и хозяйственные процессы" носит описательный характер, предполагает развитие знаний в рамках данной проблемы.

Цель данной работы: определение роли солнечной радиации в природных и хозяйственных процессах.

Для достижения цели поставлены следующие задачи:

собрать и изучить литературу о солнечной радиации;

охарактеризовать поведение солнечной радиации в земных условиях;

рассмотреть значение солнечной радиации на природные и хозяйственные процессы.

Для реализации целей и задач использовались следующие методы исследования: анализ научно-методической литературы по теме исследования, сбор информации, сравнение, обобщение, систематизация.

Предмет исследования: Воздействие солнечной радиации на физиологические процессы на планете Земля. Объект исследования: Прямая и рассеянная солнечная радиация. Курсовая работа состоит из введения, двух частей, заключения и списка литературы, включающего 10 источников.

Глава 1. Теоретические аспекты солнечной радиации

1 Поглощение и рассеяние прямой солнечной радиации в атмосфере

Основным источником энергии почти для всех природных процессов, происходящих на поверхности земли и в атмосфере, является лучистая энергия, поступающая на Землю от Солнца. Энергия, поступающая к поверхности земли из глубинных ее слоев, выделяющаяся при радиоактивном распаде, приносимая космическими лучами, а также излучение, приходящее к Земле от звезд, ничтожно малы по сравнению с энергией, поступающей на Землю от Солнца. Кроме лучистой энергии, т. е. электромагнитных волн, от Солнца приходят к Земле также различные потоки заряженных частиц, главным образом электронов и протонов, движущихся со скоростями в сотни и тысячи км/сек. Основная часть лучистой энергии, излучаемой Солнцем, представляет собой ультрафиолетовые, видимые и инфракрасные лучи. Эта часть электромагнитного излучения Солнца и называется в метеорологии солнечной радиацией.

Солнечная радиация, поступившая на верхнюю границу атмосферы, на своем пути до земной поверхности претерпевает ряд изменений, вызванных ее поглощением и рассеиванием в атмосфере. Радиация, поступающая от Солнца в атмосферу и затем на земную поверхность в виде параллельного пучка лучей, называется прямой. Значительная часть прямой радиации, пришедшей к верхней границе атмосферы, достигает земной поверхности. Часть солнечной радиации рассеивается молекулами атмосферных газов и аэрозолями и поступает к земной поверхности в виде рассеянной радиации. Проходя через земную атмосферу, солнечная радиация ослабляется вследствие поглощения и рассеяния атмосферными газами и аэрозолями. При этом изменяется и ее спектральный состав. В спектре появляются линии и полосы, обусловленные поглощением в земной атмосфере и называемые теллурическими. На рис. 1 показано распределение энергии в солнечном спектре. Кривая а приближенно характеризует ее распределение за пределами земной атмосферы, а кривые б и в - на земной поверхности при высотах солнца 35 и 15°. На кривых б и в ультрафиолетовая часть спектра обрывается слева при Х = 0,29 мкм, так как ультрафиолетовая радиация с более короткой длиной волны полностью поглощается верхними слоями атмосферы. Участок спектра с Х < 0,29 мкм можно наблюдать только на высотах более 30 км. Ультрафиолетовая же радиация с Х >0,29 мкм, достигающая земной поверхности, обладает очень малой энергией. Сильно ослабляется при прохождении через атмосферу также и коротковолновая часть видимой радиации и в меньшей степени длинноволновая, видимая и инфракрасная часть солнечного спектра. В инфракрасной части спектра имеется ряд полос поглощения, вызванных наличием в атмосфере водяного пара. При различной высоте солнца и различной высоте пункта наблюдений над земной поверхностью масса атмосферы, проходимая солнечным лучом, неодинакова. Вследствие этого различен и спектральный состав солнечной радиации. При уменьшении высоты солнца особенно сильно уменьшается ультрафиолетовая часть радиации, несколько меньше - видимая и лишь незначительно - инфракрасная.

Рис. 1. Распределение энергии в солнечном спектре.

а - на верхней границе атмосферы,

б - на земной поверхности при высоте солнца 35°,

в - на земной поверхности при высоте солнца 15°.

В поглощении длинноволновой радиации важную роль играет водяной пар: чем больше в атмосфере водяного пара, тем меньше прямой радиации доходит до Земли при прочих равных условиях. Сравнение кривых а, б и в на рис. 1 показывает, насколько существенно атмосфера изменяет первоначальное распределение энергии в спектре солнечной радиации. Рассеяние радиации в атмосфере происходит главным образом молекулами атмосферных газов и аэрозолями (пылинками, капельками тумана, облаков и др.). Интенсивность рассеяния зависит от количества рассеивающих частиц в единице объема, от их величины и природы, а также от длин волн самой рассеиваемой радиации. Ниже приведены значения коэффициента рассеяния в чистом и сухом воздухе при нормальном давлении для различных длин волн

солнечный радиация атмосфера давление

Таблица 1 Коэффициенты рассеяния в чистом и сухом воздухе при нормальном давлении

λ, мкм0,7600,5890,4860,396К·107(красные)(желтые)(голубые)(фиолетовые)0,310,861,94,4

Из таблицы 1 видно, что лучи рассеиваются тем сильнее, чем меньше длина волны, например: фиолетовые рассеиваются в 14 раз сильнее красных. Этим, в частности, объясняется голубой цвет неба. Хотя фиолетовые и синие лучи рассеиваются еще сильнее, чем голубые, их энергия значительно меньше. Поэтому в рассеянном свете преобладает голубой цвет.

Рассеяние радиации происходит во всех направлениях, однако, не с одинаковой интенсивностью. Наиболее интенсивное рассеяние имеет место в направлении падающего луча (вперед) и в противоположном направлении (назад). Минимумы рассеяния наблюдаются в направлениях, перпендикулярных к прямому лучу. Так происходит рассеяние в совершенно чистом и сухом воздухе. Доля коротких волн в рассеянной радиации больше, чем в прямой. Поэтому чем длиннее путь солнечных лучей, тем больше рассеивается коротких волн и тем больше становится доля длинных. Этим объясняется, например, что Солнце и Луна вблизи горизонта приобретают желтую или даже красноватую окраску.

Поток прямой радиации и ее спектральный состав зависят от высоты солнца и прозрачности атмосферы. Последняя в свою очередь зависит от содержания поглощающих газов и аэрозолей в частности от наличия облаков и тумана. Под влиянием этих факторов поток прямой радиации может изменяться в широких пределах. При одной и той же высоте солнца поток прямой радиации в низких широтах, где в атмосфере содержится много водяного пара и пыли, должен быть меньше, чем в высоких широтах. Однако прозрачность атмосферы влияет на этот поток почти так же, как высота солнца, от которой зависит число проходимых масс.

Поток прямой радиации увеличивается с увеличением высоты места над уровнем моря, так как чем выше находится пункт наблюдения, тем меньшая толща атмосферы пронизывается солнечными лучами и тем меньше они ослабляются. Увеличение потока прямой радиации с высотой в нижних слоях атмосферы происходит быстрее, чем в верхних, так как большая часть аэрозолей и водяного пара сосредоточена внизу. Исключительно большое влияние на прямую радиацию оказывают облака. Плотные облака нижнего яруса практически совершенно не пропускают прямую радиацию.

Если бы прозрачность атмосферы в течение дня не менялась, то изменение прямой радиации было бы симметричным относительно истинного полудня: от нуля в момент восхода она сначала быстро, а потом более медленно увеличивалась бы до наибольшего значения, достигаемого в полдень, а затем так же плавно, сначала медленно, а потом более быстро, уменьшалась до нуля в момент захода солнца. Потоки были бы одинаковыми в часы, симметричные относительно полудня.

Но прозрачность атмосферы в течение дня не остается постоянной, так как количество пыли, водяного пара и других примесей, содержащихся в воздухе, непрерывно меняется. Поэтому суточный ход прямой радиации обычно не бывает симметричным относительно полудня. В часы, близкие к полудню или послеполуденные, в результате усиления восходящих движений воздуха, поднимающих пыль и водяной пар, прямая радиация начинает уменьшаться, так что максимальное ее значение наблюдается не в полдень, а около 10 часов

Суточный ход прямой радиации меняется также в течение года, так как меняются продолжительность дня и высота солнца. Суточный ход прямой радиации, поступающей на перпендикулярную лучам и на горизонтальную поверхности, также различен вследствие неодинакового угла падения лучей на эти поверхности. На рис. 2 приведен суточный ход прямой радиации, поступающей на перпендикулярную лучам и на горизонтальную поверхности, в Павловске (под Санкт-Петербургом).

Рис. 2. Суточный ход прямой солнечной радиации в Павловске. Сплошные линии - на поверхность, перпендикулярную лучам; прерывистые линии - на горизонтальную поверхность

Как видно из этого рисунка, приход прямой радиации на горизонтальную поверхность во все часы дня меньше, чем на поверхность, перпендикулярную лучам. Особенно велико это различие в зимнее время, когда мала высота солнца.

Суточный ход прямой радиации зависит и от широты места: в низких широтах максимум в околополуденные часы выражен значительно резче, чем в высоких. Причина заключается в том, что с приближением к полюсу меньше изменяется высота солнца в течение дня. На полюсах, например, изменение высоты солнца на протяжении суток настолько незначительно, что здесь суточный ход прямой радиации практически отсутствует.

Годовой ход прямой радиации характеризуется изменением среднемесячных полуденных ее значений. Наиболее резко выражен годовой ход прямой радиации на полюсе. В зимнее полугодие солнечная радиация здесь отсутствует, а к моменту летнего солнцестояния может достигать 1,30 кал/см2 · мин. На экваторе, наоборот, амплитуда годового хода прямой радиации наименьшая. Кроме того, на экваторе годовой ход прямой радиации имеет вид двойной волны. Максимумы, достигающие 1,32 кал/см2 · мин., приходятся на дни весеннего и осеннего равноденствия, а минимумы, составляющие около 0,80 кал/см2 мин., - на дни летнего и зимнего солнцестояния. В средних широтах в годовом ходе полуденной прямой радиации максимум должен был бы наблюдаться в момент летнего солнцестояния, когда высота солнца наибольшая, а минимум - в момент зимнего солнцестояния, когда она наименьшая. Это объясняется тем, что в летние месяцы вследствие увеличения содержания в воздухе водяного пара и пыли сильно уменьшается прозрачность атмосферы. Большое значение для сельского хозяйства, строительства и решения ряда технических задач имеют данные о суммах прямой радиации, получаемой горизонтальной поверхностью за сутки, месяц, год. Различают теоретические, возможные и действительные суммы прямой радиации. Теоретической суммой называется количество радиации, поступающее от Солнца за тот или иной промежуток времени на единицу горизонтальной поверхности, находящейся на внешней границе атмосферы

Возможной суммой называется количество лучистой энергии, которое поступало бы в данном месте при средней для него прозрачности атмосферы и при полном отсутствии облаков за тот или иной промежуток времени на единичную горизонтальную площадку, находящуюся на земной поверхности. Действительной суммой прямой радиации называется фактическое ее количество, поступившее за тот или иной промежуток времени на единичную горизонтальную площадку, находящуюся на земной поверхности. Действительные суммы находятся путем обработки записей актинографа или из наблюдений по актинометру с учетом продолжительности солнечного сияния, устанавливаемой по записям гелиографа.

Таблица 2 Суточные суммы прямой радиации в разные дни в Харькове (кал/см2)

Сумма16/III15/IV15/XI16/ХIIТеоретическая Возможная Действительная519,6 305,3 116,8985,2 584,3 361,6610,4 365,0 215,1167,9 77,0 11,8

В табл. 2 приведены теоретические, возможные и действительные суточные суммы прямой радиации в Харькове в разное время года. Данные табл. 2 указывают, что в ослаблении солнечной радиации большую роль играют атмосфера (даже в ясные дни при средней прозрачности атмосферы земная поверхность получает лишь около 60% солнечной энергии, приходящей на верхнюю границу атмосферы), а также облачность (она значительно уменьшает приход прямой радиации по сравнению с возможными ее суммами).

Наблюдения показывают, что действительные суммы прямой радиации в весенние и летние месяцы незначительно увеличиваются от высоких к низким широтам, за исключением заполярных областей, где они резко уменьшаются. Осенние и зимние суммы значительно убывают с увеличением широты, что приводит также к сильному уменьшению годовых сумм в том же направлении

1.2 Рассеянная солнечная радиация

Приход рассеянной радиации на земную поверхность может достигать нескольких десятых долей кал/см2 · мин. Наблюдаются следующие зависимости.

Чем больше высота солнца, тем больше поток рассеянной радиации.

Чем больше в атмосфере рассеивающих частичек, тем большая доля солнечной радиации рассеивается. Следовательно, поток рассеянной радиации увеличивается при увеличении замутненности атмосферы.

Поток рассеянной радиации значительно увеличивается при наличии светлых и относительно тонких облаков, представляющих собой хорошо рассеивающую среду. Особенно велико влияние облаков, освещаемых солнцем сбоку (высококучевых, кучевых). Под влиянием такой облачности рассеянная радиация может увеличиваться в 8-10 раз по сравнению с ее приходом при ясном небе. При сплошной облачности среднего и особенно верхнего яруса рассеянная радиация в 1,5-2 раза больше, чем при ясном небе. Только при очень мощной сплошной облачности и при выпадении осадков рассеянная радиация меньше, чем при ясном небе.

Приход рассеянной радиации зависит от характера деятельной поверхности, в первую очередь от ее отражательной способности, так как радиация, отраженная от поверхности, вторично рассеивается в атмосфере и часть ее вновь попадает на поверхность, где добавляется к первично рассеянной радиации. Особенно заметно увеличивает рассеянную радиацию снежный покров, отражающий до 70-90% падающих на него прямых и рассеянных лучей. Чем меньше высота солнца, тем сильнее увеличивается рассеянная радиация за счет вторичного рассеивания. Так, снежный покров увеличивает поток рассеянной радиации на 65% при положении солнца у горизонта и на 12% при высоте солнца 50°.

С увеличением высоты над уровнем моря рассеянная радиация при ясном небе уменьшается, так как уменьшается толща вышележащих рассеивающих слоев атмосферы. Но при наличии облаков рассеянная радиация в подоблачном слое атмосферы увеличивается с высотой.

Суточный и годовой ход рассеянной радиации при безоблачном небе параллелен ходу прямой радиации. Но утром рассеянная радиация появляется раньше, чем прямая. Затем по мере поднятия солнца над горизонтом она увеличивается, достигает максимума в 12 - 13 часов, после чего начинает уменьшаться и в момент окончания сумерек обращается в нуль. В годовом ходе максимум рассеянной радиации при ясном небе наблюдается в июле, минимум - в январе. Так же прост годовой ход рассеянной радиации при сплошной облачности. Однако описанный суточный и годовой ход рассеянной радиации сильно нарушается и усложняется при переменной облачности.

Суммы рассеянной радиации, приходящей на земную поверхность, за любой промежуток времени определяют по записи регистрирующих приборов или путем расчета по результатам наблюдений в отдельные сроки.

Суточные суммы рассеянной радиации в основном зависят от высоты солнца и продолжительности дня. Поэтому они растут с уменьшением широты и от зимы к лету. Большое влияние на приход рассеянной радиации оказывают прозрачность воздуха и облачность.

Рассеянная радиация играет особенно значительную роль в высоких широтах и в зимние месяцы. Это хорошо видно, например, из табл. 3, в которой наряду с суммами рассеянной радиации (∑ D) приведены для сравнения суммы прямой радиации (∑ S´), приходящей на горизонтальную поверхность.

Таблица 3 Сезонные и годовые суммы прямой (на горизонтальную поверхность) и рассеянной радиации (кал/см2)

ПунктСумма радиацииЗимаВеснаЛетоОсеньГод%Якутск (φ = 62°)∑ S´1,6 19,1 22,4 5,1 50,2 57 ∑ D2,613,815,45,537,343Павловск (φ = 59,7°)∑ S´0,915,122,74,142,856∑ D2,211,414,65,033,244Карадаг (φ = 40°)∑ S´4,522,036,714,077,264∑ D6,514,013,68,442,536

Как видно из табл. 3, в зимние месяцы суммы рассеянной радиации повсюду больше, чем суммы прямой радиации, особенно в высоких широтах, где в это время даже полуденные высоты солнца невелики. В летнее время рассеянная радиация тоже играет большую роль в районах со значительной облачностью (Якутск, Павловск). В годовых суммах лучистой энергии доля рассеянной радиации в высоких широтах и в районах с большим количеством облаков превышает 50%. Например, в Архангельске она составляет 56%, в Санкт-Петербурге 51% и т. д.

1.3 Суммарная радиация и радиационный баланс

Суммарная радиация - это сумма прямой (на горизонтальную поверхность) и рассеянной радиации. Состав суммарной радиации, т. е. соотношение между прямой и рассеянной радиацией, меняется в зависимости от высоты солнца, прозрачности, атмосферы и облачности.

До восхода солнца суммарная радиация состоит полностью, а при малых высотах солнца - преимущественно из рассеянной радиации. С увеличением высоты солнца доля рассеянной радиации в составе суммарной при безоблачном небе уменьшается: при h = 8° она составляет 50%, а при h = 50° - только 10-20%.

Чем прозрачнее атмосфера, тем меньше доля рассеянной радиации в составе суммарной.

Суточный и годовой ход суммарной радиации определяется главным образом изменением высоты солнца: суммарная радиация изменяется почти прямо пропорционально изменению высоты солнца. Но влияние облачности и прозрачности воздуха сильно усложняет эту простую зависимость и нарушает плавный ход суммарной радиации.

Суммарная радиация существенно зависит также от широты места. С уменьшением широты ее суточные суммы увеличиваются, причем, чем меньше широта места, тем равномернее суммарная радиация распределяется по месяцам, т. е. тем меньше амплитуда ее годового хода. Например, в Павловске (φ = 60°) ее месячные суммы составляют от 12 до 407 кал/см2, в Вашингтоне (φ = 38,9°) - от 142 до 486 кал/см2, а в Такубае (φ = 19°) - от 307 до 556 кал/см2. Годовые суммы суммарной радиации также увеличиваются с уменьшением широты. Однако в отдельные месяцы суммарная радиация в полярных районах может быть больше, чем в более низких широтах. Например, в бухте Тихой в июне суммарная радиация на 37% больше, чем в Павловске, и на 5% больше чем в Феодосии.

Непрерывные наблюдения в Антарктиде за последние 7-8 лет показывают, что месячные суммы суммарной радиации в этом районе в самом теплом месяце (декабре) примерно в 1,5 раза больше, чем на таких же широтах в Арктике, и равны соответствующим суммам в Крыму и в Ташкенте. Даже годовые суммы суммарной радиации в Антарктиде больше, чем, например, в Санкт-Петербурге. Такой значительный приход солнечной радиации в Антарктиде объясняется сухостью воздуха, большой высотой антарктических станций над уровнем моря и высокой отражательной способностью снежной поверхности (70-90%), увеличивающей рассеянную радиацию

Разность между всеми приходящими на деятельную поверхность и уходящими от нее потоками лучистой энергии называется радиационным балансом деятельной поверхности. Иначе говоря, радиационный баланс деятельной поверхности представляет собой разность между приходом и расходом радиации на этой поверхности. Если поверхность горизонтальна, то к приходной части баланса относятся прямая радиация, приходящая на горизонтальную поверхность, рассеянная радиация и встречное излучение атмосферы. Расход радиации слагается из отраженной коротковолновой, длинноволнового излучения деятельной поверхности и отраженной от нее части встречного излучения атмосферы.

Радиационный баланс представляет собой фактический приход, или расход лучистой энергии на деятельной поверхности, от которого зависит, будет ли происходить ее нагревание или охлаждение. Если приход лучистой энергии больше ее расхода, то радиационный баланс положителен и поверхность нагревается. Если же приход меньше расхода, то радиационный баланс отрицателен и поверхность охлаждается. Радиационный баланс в целом, как и отдельные составляющие его элементы, зависит от многих факторов. Особенно сильно на него влияют высота солнца, продолжительность солнечного сияния, характер и состояние деятельной поверхности, замутнение атмосферы, содержание в ней водяного пара, облачность и др.

Мгновенный (минутный) баланс днем обычно положителен, особенно летом. Примерно за 1 час до захода солнца (исключая зимнее время) расход лучистой энергии начинает превышать ее приход, и радиационный баланс становится отрицательным. Приблизительно через 1 час после восхода солнца он снова становится положительным. Суточный ход баланса днем при ясном небе примерно параллелен ходу прямой радиации. В течение ночи радиационный баланс обычно изменяется мало, но под влиянием переменной облачности он может изменяться значительно

Годовые суммы радиационного баланса положительны на всей поверхности суши и океанов, кроме районов с постоянным снежным или ледяным покровом, например Центральной Гренландии и Антарктиды. Севернее 40° северной широты и южнее 40° южной широты зимние месячные суммы радиационного баланса отрицательны, причем период с отрицательным балансом увеличивается в направлении к полюсам. Так, в Арктике эти суммы положительны только в летние месяцы, на широте 60° - в течение семи месяцев, а на широте 50° - в течение девяти месяцев. Годовые суммы радиационного баланса меняются при переходе с суши на море.

Радиационный баланс системы Земля-атмосфера представляет собой баланс лучистой энергии в вертикальном столбе атмосферы сечением 1 см2, простирающемся от деятельной поверхности до верхней границы атмосферы. Его приходная часть состоит из солнечной радиации, поглощенной деятельной поверхностью и атмосферой, а расходная - из той части длинноволнового излучения земной поверхности и атмосферы, которая уходит в мировое пространство. Радиационный баланс системы Земля-атмосфера положителен в поясе от 30° южной широты до 30° северной широты, а в более высоких широтах он отрицателен

Изучение радиационного баланса представляет большой практический интерес, так как этот баланс является одним из основных климатообразующих факторов. От его величины зависит тепловой режим не только почвы или водоема, но и прилежащих к ним слоев атмосферы. Знание радиационного баланса имеет большое значение при расчетах испарения, при изучении вопроса о формировании и трансформации воздушных масс, при рассмотрении влияния радиации на человека и растительный мир.

Глава 2. Влияние солнечной радиации на природные и хозяйственные процессы

2.1 Солнечная радиация и климат

Солнце - это главная сила, управляющая климатической системой и даже самые незначительные изменения в количестве солнечной энергии могут иметь серьезные последствия для климата земли. Солнечная активность увеличивается и уменьшается каждые одиннадцать лет (или, как полагают некоторые специалисты, каждые двадцать два года) солнечного цикла. За последние 3 миллиона лет регулярные колебания количества солнечного света, падающего на поверхность планеты, вызвали серию ледниковых периодов, перемежавшихся короткими теплыми межледниковыми интервалами. В соответствии с гипотезой Миланковича полушария Земли в результате изменения ее движения могут получать меньшее или большее количество солнечной радиации, что отражается на глобальной температуре. За миллионы лет сменилось множество климатических циклов. В конце последнего ледникового периода ледяной покров, в течение 100 тысяч лет сковывавший север Европы и Северной Америки, начал уменьшаться и 6 тысяч лет назад исчез. Многие ученые считают, что развитие цивилизации приходится в основном на теплый промежуток между ледниковыми периодами.

Поступающая на поверхность Земли солнечная радиация является основной энергетической базой формирования климата. Она определяет основной приток тепла к земной поверхности. Атмосфера нагревается, поглощая как солнечную радиацию, так и собственное излучение земной поверхности. Нагретая атмосфера излучает сама. Так же как и земная поверхность, она излучает инфракрасную радиацию в диапазоне невидимых глазу длинных волн. Значительная часть (около 70%) излучения атмосферы приходит к земной поверхности, которая практически полностью ее поглощает (95-99%). Это излучение называется "встречным излучением", так как оно направлено навстречу собственному излучению земной поверхности. Основной субстанцией в атмосфере, поглощающей земное излучение и посылающей встречное, является водяной пар. Помимо водяного пара в состав атмосферы входят углекислый газ (СО2) и другие газы, которые поглощают энергию в диапазоне волн 7-15 мкм, т.е. там, где энергия земного излучения близка к максимуму. Сравнительно небольшие изменения концентрации СО2 в атмосфере могут оказать воздействие на температуру земной поверхности. По аналогии с процессами, происходящими в оранжереях, когда проникающая сквозь защитную пленку радиация нагревает землю, излучение которой пленкой задерживается, обеспечивая дополнительный нагрев, этот процесс взаимодействия земной поверхности с атмосферой носит название "парникового эффекта". Явление парникового эффекта позволяет поддерживать на поверхности Земли температуру, при которой возможно возникновение и развитие жизни. Если бы парниковый эффект отсутствовал, средняя температура поверхности земного шара была бы значительно ниже, чем она есть сейчас.

Влияние внешних факторов на глобальную температуру воздуха изучается на основе моделирования. Большинство работ в этом направлении свидетельствуют о том, что в последние 50 лет предполагаемые темпы и масштабы потепления, обусловленные увеличением выбросов парниковых газов, вполне сопоставимы с темпами и масштабами наблюдаемого потепления или превышают их. Изменения концентрации в атмосфере парниковых газов и аэрозолей, изменения солнечной радиации и свойств земной поверхности меняют энергетический баланс климатической системы. Эти изменения выражаются термином "радиационное воздействие", которое используется для сравнения того, как в силу целого ряда человеческих и естественных факторов на глобальный климат оказывается нагревающее или охлаждающее влияние

На территории России зимой наибольших значений суммарная солнечная радиация достигает на юге Дальнего Востока, в южном Забайкалье и Предкавказье. В январе крайний юг Приморья получает свыше 200 мДж/м2, остальные перечисленные районы - свыше 150 мДж/км2. К северу суммарная радиация быстро убывает за счет более низкого положения Солнца и сокращения продолжительности дня. К 60° с.ш. она уже уменьшается в 3-4 раза. Севернее полярного круга устанавливается полярная ночь, продолжительность которой на 70° с.ш. составляет 53 дня. Радиационный баланс зимой на всей территории страны отрицательный.

В этих условиях происходит сильное выхолаживание поверхности и формирование Азиатского максимума с центром над Северной Монголией, юго-востоком Алтая, Тувой и югом Прибайкалья. Давление в центре антициклона превышает 1040 гПа (мбар). От Азиатского максимума отходят два отрога: на северо-восток, где формируется вторичный Оймяконский центр с давлением свыше 1030 гПа, и на запад, на соединение с Азорским максимумом, - ось Воейкова. Она протягивается через Казахский мелкосопочник на Уральск - Саратов - Харьков - Кишинев и далее вплоть до южного побережья Франции. В западных районах России в пределах оси Воейкова давление понижается до 1021 гПа, но остается более высоким, чем на территориях, расположенных севернее и южнее оси.

Ось Воейкова играет важную роль климатораздела. К югу от нее (в России это - юг Восточно-Европейской равнины и Предкавказье) дуют восточные и северо-восточные ветры, несущие сухой и холодный континентальный воздух умеренных широт из Азиатского максимума. К северу от оси Воейкова дуют юго-западные и западные ветры. Роль западного переноса в северной части Восточно-Европейской равнины и на северо-западе Западной Сибири усиливается благодаря Исландскому минимуму, ложбина которого достигает Карского моря (в районе Варангер-фьорда давление составляет 1007, 5 гПа). С западным переносом в эти районы нередко поступает относительно теплый и влажный атлантический воздух. На остальной части Сибири преобладают ветры с южной составляющей, выносящие континентальный воздух из Азиатского максимума. На рис. 3 показано, что над территорией Северо-Востока в условиях котловинного рельефа и минимальной солнечной радиации зимой формируется континентальный арктический воздух, очень холодный и сухой. Из северо-восточного отрога высокого давления он устремляется в сторону Северного Ледовитого и Тихого океанов

Рис. 3. Средняя температура воздуха в январе

У восточных берегов Камчатки зимой формируется Алеутский минимум. На Командорских островах, в юго-восточной части Камчатки, в северной части Курильской островной дуги давление ниже 1003 гПа, на значительной части побережья Камчатки давление ниже 1006 гПа. Здесь, на восточной окраине России, область низкого давления расположена в непосредственной близости от северо-восточного отрога, поэтому образуется высокий градиент давления (особенно близ северного берега Охотского моря); холодный континентальный воздух умеренных широт (на юге) и арктический (на севере) выносится на акваторию морей. Преобладают ветры северных и северо-западных румбов. Арктический фронт зимой устанавливается над акваторией Баренцева и Карского морей, а на Дальнем Востоке - над Охотским морем. Полярный фронт в это время проходит южнее территории России. Лишь на Черноморском побережье Кавказа сказывается влияние циклонов Средиземноморской ветви полярного фронта, пути движения которых смещаются с Передней Азии на Черное море в связи с более низким давлением над его просторами. С фронтальными зонами связано распределение осадков.

С наступлением теплого периода резко возрастает роль радиационного фактора климатообразования. Он определяет температурный режим почти на всей территории страны. Наибольших значений суммарная радиация достигает летом в пустынях Прикаспия и на Черноморском побережье Кавказа - в июле 700 мДж/м2. К северу количество солнечной радиации убывает мало, благодаря увеличению продолжительности дня, поэтому на севере Таймыра она составляет в июле 550 мДж/м2, т.е. 80% от радиации, поступающей на юге страны. Летом на всей территории страны радиационный баланс и среднемесячные температуры положительны. Средняя температура июля на самых северных островах Земли Франца-Иосифа и Северной Земли близка к нулю, на побережье Таймыра - немногим более + 2°С, в остальных прибрежных районах Сибири + 4...+ 6°С, а на берегах Баренцева моря + 8...+ 9°С. При движении к югу температура быстро нарастает до +12...+13°С. Южнее нарастание температуры идет более плавно. Максимального значения + 25°С среднеиюльская температура достигает в пустынях Прикаспия и Восточного Предкавказья.

Летом суша прогревается, давление над ней понижается. Над Забайкальем, югом Якутии и средним Приамурьем давление устанавливается ниже 1006 гПа, а над югом Даурии даже 1003 гПа. По направлению к океанам давление повышается, достигая 1012 гПа над северными акваториями Восточносибирского и Чукотского морей, над Баренцевым морем и западным побережьем Новой Земли. Воздушные массы устремляются вглубь материка. Арктический воздух - холодный и сухой, особенно в восточных районах Арктики. Продвигаясь на юг, он быстро прогревается и удаляется от состояния насыщения. Гавайский (Северотихоокеанский) максимум летом перемещается к северу, приближаясь к дальневосточным границам России, в результате чего возникает летний муссон. На материк поступает морской тихоокеанский воздух умеренных широт, а иногда и тропический. В связи с перемещением Азовского максимума к северу его отрог проникает на Восточно-Европейскую равнину. К северу и востоку от него давление понижается. Летом усиливается западный перенос. С Атлантики на территорию России поступает морской воздух умеренных широт.

Все воздушные массы, приходящие летом на территорию России, трансформируются в континентальный воздух умеренных широт. Над северными морями, восточнее Таймыра над прибрежными районами Сибири возникает арктический фронт. Над горами Южной Сибири проходит Монгольская ветвь полярного фронта, а над центральными районами Восточно-Европейской равнины и Приморьем возникает внутримассовый фронт между морским слабо трансформированным и континентальным воздухом умеренных широт

2.2 Воздействие солнечной радиации на развитие растений и животных

В предыдущей части данной курсовой работы была установлена взаимосвязь между приходящей солнечной радиацией и поверхностью Земли. Благодаря этой взаимосвязи солнечная радиация оказывает активное влияние на самые различные процессы на Земле, в том числе и на ее биосферу. В.И. Вернадский, говоря о факторах, влияющих на развитие биосферы, указывал среди прочих и солнечную радиацию. Так, он подчеркивал, что без космических светил, в частности без Солнца, жизнь на Земле не могла бы существовать. Живые организмы трансформируют солнечное излучение в земную энергию (тепловую, электрическую, химическую, механическую) в масштабах, определяющих существование биосферы. Перерабатывая солнечную энергию, живое вещество преобразует всю нашу планету. В этом смысле можно считать, что происхождение, образование и функционирование биосферы является результатом действия в том числе и солнечной радиации

Поступающая на землю часть лучистой энергии солнца передается электромагнитными колебаниями с длиной волн 300...4000 нм. Для растений наибольшее значение имеет область физиологической радиации, оказывающей существенное влияние на процессы фотосинтеза, роста и развития. Из приходящей к растениям физиологической радиации ими поглощается около 80 %, отражается 10 и пропускается 10 %. Для фотосинтеза и в других физиологических процессах растения используют до 6 % поглощенной радиации, остальное количество идет на теплопередачу и транспирацию. Спектральный состав света сильно влияет на характер роста и развития растений. Пигменты растений поглощают радиацию в диапазоне 320...760 нм. Основные максимумы поглощения находятся в сине-фиолетовой и красной, а минимум - в желто-зеленой области спектра. Ультрафиолетовые лучи в значительной степени поглощаются белковыми молекулами, что может привести к их серьезным повреждениям. Еще двумя важными хромофорами, поглощающими ультрафиолетовые лучи, являются эндогенные фитогормоны. Благодаря им ультрафиолетовые лучи влияют на процессы роста и развития - наблюдаются непропорциональный рост органов, нарушение соотношения в росте корня и побега, образование растений с компактным (альпийским) габитусом. Часть ультрафиолетового и синего излучения с длиной волны не более 510 нм поглощается малоизученным пигментом криптохромом. Синий свет поглощается каротиноидами и хлорофиллом, красный - хлорофиллом, красный и дальний красный - фитохромом. Радиация с большей длиной волны уже поглощается не специальными пигментами, а всей поверхностью растения, в результате чего повышается его температура. Это можно наблюдать в посеве: верхние ярусы листьев улавливают и отражают преимущественно свет видимой коротковолновой части спектра; к нижним же листьям проникает в основном длинноволновое излучение, что на фоне ослабленной фотосинтетической деятельности значительно активизирует их дыхание. Под влиянием этого излучения стебли вытягиваются, в результате удлинения междоузлий формируется рыхлая ткань с крупными клетками, легко повреждающаяся при ультрафиолетовом излучении, что часто происходит при высадке выращенной с загущением и переросшей рассады

Лучистая энергия, вызывая изменения в ходе физиологических процессов, в конечном итоге является мощным фактором формообразования растений. Продолжительность освещения определяет, а зачастую изменяет внешний вид растения. Так, на коротком (8-10 - часовом) дне растения длинного дня образуют большое число листьев или побегов ветвления, многие виды (салат, рудбекия, редис и т. д.) образуют розетку листьев, стебель их укорочен. Короткодневные растения в этих же условиях низкорослы, число листьев невелико, соцветия (например, метелка у проса, риса) малы, также незначительно и число образующихся семян. При увеличении фотопериода (свыше 14-16 часов) развитие задерживается, а рост может значительно усилиться, в результате чего зачастую наблюдаются даже такие явления гигантизма, как обилие листьев на длинном стебле, появление множества пазушных побегов, ветвистость колоса, махровость цветков, многопочатковость, увеличение числа и размеров цветков и семян в каждом соцветии. Длина дня влияет на изменение соотношения между надземными и подземными органами, а также регулирует образование стеблевых утолщений, клубней, корнеплодов и луковиц у таких растений, как редис, лук, морковь, картофель, георгины. Так, например, редис и картофель, задерживаясь в развитии на коротком дне, направляют ассимилянты в корнеплод или клубни. В результате селекции отбирались сорта, способные и на длинном дне формировать корнеплод (например, у редиса) или после цветения клубни у картофеля. Длина дня влияет на дифференциацию пола: у конопли на длинном дне половина растений мужских, половина женских, а на коротком дне, когда развитие идет быстрее, половина растений оказываются обоеполыми, а половина - женскими. Короткий день ускоряет формирование женских цветков у огурцов и дынь, а также початков у кукурузы. Сочетание различной длины дня и потока с различным спектральным составом радиации (или с разным соотношением энергии, например, красных и синих лучей в излучении ламп "белого" света) в еще большей мере влияет на морфогенетические изменения.

В темноте или при слабой интенсивности радиации обычно наблюдается этиоляция растений (вытягивание и утоньшение стебля и листьев, усиленное растяжение черешков и т. д.) преимущественно за счет растяжения клеток в длину - процесс, биологически направленный на вынесение органов к свету, как это имеет место, например, у стебля, образующегося в почве при прорастании семян. Свет тормозит вытягивание, причем тем сильнее, чем выше его интенсивность. При одной и той же длине дня в зависимости от спектрального состава света и его интенсивности высота растения и его форма меняются: при слабой интенсивности наиболее компактные и низкорослые растения, хотя и с большим числом листьев, формируются при действии оранжево-красных, а при высоких интенсивности - под влиянием сине-фиолетовых лучей.

При освещении некоторых видов растений только красным светом наблюдалось формирование листьев с более простой по форме и удлиненной пластинкой, с меньшим числом долей (например, у редиса, томатов и др.). Ряд водных растений, которым свойственно явление гетерофилии (листья разной формы), образуют при действии красного или зеленого света лишь лентовидные, простые по форме листья; однако на синем или белом свету развиваются нормальные и более сложные по форме листья. В общем для всех растений необходимо наличие в излучении сине-фиолетовых лучей, без которых в той или иной степени рано или поздно наблюдается ненормальный рост, развитие, аномалии в дифференциации и т. д. Таким образом, лучистая энергия в диапазоне 300-800 ммк является мощным регуляторным фактором, влияющим на изменения формообразовательных процессов

Наличие в растениях и их органах ряда фоторецепторных систем, различающихся спектрами поглощения и определяющих тем самым спектры действия процессов и их взаимодействие при облучении белым светом, соз дает основу чрезвычайного разнообразия свойств и признаков растений - признаков, количественное и качественное выражение которых зависит от различных воздействий. Таким образом, самые разнообразные процессы в жизни растений регулируются лучистой энергией, источником которой в естественных условиях является излучаемая Солнцем радиация.

Очень важно и многообразно влияние солнечной радиации на животных. Солнечная радиация оказывает мощное биологическое действие, стимулирует физиологические процессы в организме, изменяет обмен веществ и общий тонус организма. Биологическое действие лучей на организм зависит от длины волны - чем короче волны, тем сильнее их биологическое действие. Наиболее сильное действие оказывают ультрафиолетовые лучи. Они стимулируют белковый, жировой, углеводный и минеральный обмены. Отмечено их действие на функции кроветворения и иммунологические процессы, что обусловливает повышение защитных сил организма. Под воздействием УФЛ в коже животных из провитамина 7-дегидрохолестерина образуется витамин D3 регулирующий фосфорно-кальциевый обмен и предохраняющий молодых особей от рахита, а взрослых - от остеомаляции.

Большое значение имеет бактерицидный эффект УФЛ, в результате чего происходит обеззараживание воздуха, почвы, воды. Наиболее характерной реакцией организма человека на воздействие УФЛ является развитие пигментации (загар). Передозировка ультрафиолетового облучения может привести к ожогам и раздражению кожи, головным болям, повышению температуры тела.

Инфракрасные лучи обладают тепловым действием. В целях улучшения физиологического состояния, роста, развития и сохранности молодняка, а также создания оптимального температурно-влажностного режима в помещениях в осенний и зимне-весенний периоды года широко используют локальный обогрев инфракрасными лампами. ИК лучи повышают температуру воздуха, прогревают кожу и глубоколежащие ткани, способствуют притоку крови к периферическим кровеносным сосудам, благодаря этому создается тепловой барьер, предупреждающий охлаждение организма. ИК лучи совершенствуют теплорегуляцию и способствуют закаливанию организма молодняка сельскохозяйственных животных

Видимый свет обеспечивает ориентацию животных в пространстве, повышает двигательную активность за счет активизации нервно-мышечного тонуса. Видимый свет вызывает раздражение зрительного нерва, возбуждает нервную систему и эндокринные железы и через них действует на весь организм. Под влиянием света у животных усиливается секреция половых желез и стимулируется половая функция. Недостаток света у растущих животных может вызвать необратимые качественные изменения в половых железах, а у взрослых животных снижает половую активность, оплодотворяемость или вызывает временное бесплодие. Так, например, у ремонтных свинок и хряков, выращенных в условиях недостаточной освещенности, масса яичников и семенников на 20-24 % ниже, чем у животных-аналогов, содержащихся в условиях нормальной освещенности.

Содержание хряков-производителей при освещенности 100-150 лк и продолжительности светового дня 9-10 ч положительно влияет на их потенцию и качество спермы. Активность яичников и проявление половой охоты у коров также в значительной степени зависит от светового фактора. Оптимальной для них является 16-часовая освещенность. Практические наблюдения показывают, что коровы, содержащиеся в крайних рядах стойл у окон, быстрее приходят в охоту и оплодотворяются, чем коровы в центральных рядах стойл, где освещенность в 5-10 раз ниже.

Особое значение освещенность помещений имеет для птиц. Использование дифференцированного светового режима, в зависимости от возраста и периода яйцекладки, позволяет обеспечить равномерную круглогодовую яйценоскость. Снижение интенсивности освещения понижает двигательную активность животных, что приводит к более эффективному использованию энергии корма, повышению среднесуточных приростов массы, в связи с чем рекомендуется содержание откармливаемых животных в затемненных помещениях. Однако при этом в мясе накапливается большая доля жира и уменьшается доля белка. В условиях затемнения у животных снижается прочность трубчатых костей. Чрезмерно яркое освещение приводит к повышению агрессивности и каннибализму

Учитывая разностороннее влияние солнечной радиации, животных нужно размещать в достаточно светлых помещениях, регулярно предоставлять им моцион, а летом содержать на пастбище или в летних лагерях. Таким образом, под воздействием солнечных лучей повышается общий тонус организма, сопротивляемость его инфекции, естественная резистентность и продуктивность животных.

Заключение

Многие тысячелетия люди воспринимали лишь видимую часть волнового излучения Солнца. Позднее было обнаружено, что Солнце излучает не только видимый, но и невидимый простым глазом свет, а также заряженные частицы. Было установлено, что солнечная радиация способна преобразовать атмосферу Земли и взаимодействовать с ее поверхностью.

Подводя итог к данной курсовой работе что, солнечная радиация сильно влияет на Землю только в дневное время, безусловно - когда Солнце находится над горизонтом. Также солнечная радиация очень сильна вблизи полюсов, в период полярных дней, когда Солнце даже в полночь находится над горизонтом. Показано, что сумма радиации, полученной небесным телом, зависит от расстояния между планетой и звездой - при увеличении расстояния вдвое количество радиации, поступающее от звезды на планету уменьшается вчетверо (пропорционально квадрату расстояния между планетой и звездой). Таким образом, даже небольшие изменения расстояния между планетой и звездой (зависит от эксцентриситета орбиты) приводят к значительному изменению количества поступающей на планету радиации.

Радиационный баланс, например, на самых северных островах России отрицательный; в материковой части изменяется от 400 мДж/м2 на крайнем севере Таймыра до 2000 мДж/м2 на крайнем юге Дальнего Востока, в низовьях Волги и Восточном Предкавказье. Максимального значения (2100 мДж/м2) радиационный баланс достигает в Западном Предкавказье. Радиационный баланс определяет то количество тепла, которое расходуется на многообразные процессы, протекающие в природе. Следовательно, близ северных материковых окраин России на природные процессы, и прежде всего на климатообразование, расходуется в пять раз меньше тепла, чем у ее южной окраины.

Однако гораздо более сильно количество поступающей солнечной радиации зависит от смен времён года - в настоящее время общее количество солнечной радиации, поступающее на Землю, остаётся практически неизменным, но на широтах 65° северной широты (широта северных городов России, Канады) летом количество поступающей солнечной радиации более чем на 25% больше, чем зимой. Это происходит из-за того, что Земля по отношению к Солнцу наклонена под углом 23,3 градуса. Зимние и летние изменения взаимно компенсируются, но тем не менее по росту широты места наблюдения всё больше становится разрыв между зимой и летом, так, на экваторе разницы между зимой и летом нет. За Полярным кругом летом поступление солнечной радиации очень высоко, а зимой очень мало. Это формирует климат на Земле. Кроме того, периодические изменения эксцентриситета орбиты Земли могут приводить к возникновению различных геологических эпох: к примеру, ледникового периода. Факторы, влияющие на биогеохимические процессы и на климат Земли, определяются ее пространственным расположением относительно Солнца (наклон земной оси к плоскости орбиты Земли), расстоянием Земли от Солнца, условиями прохождения солнечных лучей и главным образом процессами, происходящими на Солнце, которые называют в целом солнечной активностью. Основой солнечно-земных связей является влияние солнечной активности на неустойчивость технических процессов, которые проходят на Земле, в ее атмосфере и околоземном космическом пространстве.

В результате проделанной работы выявлены основные выводы:

Поступающая на Землю прямая солнечная радиация и отраженная от земной поверхности рассеянная солнечная радиация, являются основными источниками энергии на планете.

Солнечная радиация, поставляющая на Землю тепло и свет, имеет важнейшее значение в генезисе климата, представляя собой основную причину почти всех метеорологических явлений и процессов, происходящих на земной поверхности и в атмосфере.

Солнечная радиация - один из важных факторов жизнедеятельности растений и животных, в значительной степени определяющий их продуктивность.

Список литературы

1. Шульгин И.А. - Солнечная радиация и растение. СПб.: Гидрометиздат, 2005. - 234 с.

Кузнецов В.Н, Идлис Г.М., Гущина В.Н. - Естествознание. М.: Агар,

Мамонтов Г.С., Захаров В.Б. - Общая биология. М.: Высшая школа,

Ку-Нан Лиоу. - Основы радиационных процессов в атмосфере, СПб.: Гидрометиздат, 2000. - 217 с.

Никифоров Г.С. - Психология здоровья, СПб.: Питер, 2003. - 255 с.

Шаров В.Б. - Здоровье и радиация, Челябинск: Урало-Сибирский Дом экономической и научно-технической литературы, 2002. - 189 с.

Катонов В.И., Плиниев С.Г. - О сельском хозяйстве, М:. Л. Сельхозгиз, 2010. - 302 c.

Марков, В.М. - Овощеводство, М.: Колос; Издание 2-е, перераб.,

Вракин В.Ф., Сидорова М.В, - Морфология с/х животных. М.: "Агропромиздат", 2005. - 539с.

10. Оболенский В.Н., - Метеорология, М.: Гидрометеиздат, 2004. - 638с.

Источники тепла. В жизни атмосферы решающее значение имеет тепловая энергия. Главнейшим источником этой энергии является Солнце. Что же касается теплового излучения Луны, планет и звезд, то оно для Земли настолько ничтожно, что практически его нельзя принимать во внимание. Значительно больше тепловой энергии дает внутреннее тепло Земли. По вычислениям геофизиков, постоянный приток тепла из недр Земли повышает температуру земной поверхности на 0°,1. Но подобный приток тепла все же настолько мал, что принимать его в расчет также нет никакой необходимости. Таким образом, единственным источником тепловой энергии на поверхности Земли можно считать только Солнце.

Солнечная радиация. Солнце, имеющее температуру фотосферы (излучающей поверхности) около 6000°, излучает энергию в пространство во всех направлениях. Часть этой энергии в виде огромного пучка параллельных солнечных лучей попадает на Землю. Солнечная энергия, дошедшая до поверхности Земли в виде прямых лучей Солнца, носит название прямой солнечной радиации. Но не вся солнечная радиация, направленная на Землю, доходит до земной поверхности, так как солнечные лучи, проходя через мощный слой атмосферы, частично поглощаются ею, частично рассеиваются молекулами и взвешенными частичками воздуха, некоторая часть отражается облаками. Та часть солнечной энергии, которая рассеивается в атмосфере, называется рассеянной радиацией. Рассеянная солнечная радиация распространяется в атмосфере и попадает к поверхности Земли. Нами этот вид радиации воспринимается как равномерный дневной свет, когда Солнце полностью закрыто облаками или только что скрылось за горизонтом.

Прямая и рассеянная солнечная радиация, достигнув поверхности Земли, не полностью поглощается ею. Часть солнечной радиации отражается от земной поверхности обратно в атмосферу и находится там в виде потока лучей, так называемой отраженной солнечной радиации.

Состав солнечной радиации весьма сложный, что связано с очень высокой температурой излучающей поверхности Солнца. Условно по длине волн спектр солнечной радиации делят на три части: ультрафиолетовую (η<0,4<μ видимую глазом (η от 0,4μ до 0,76μ) и инфракрасную часть (η >0,76μ). Кроме температуры солнечной фотосферы, на состав солнечной радиации у земной поверхности влияет еще поглощение и рассеивание части солнечных лучей при их прохождении через воздушную оболочку Земли. В связи с этим состав солнечной радиации на верхней границе атмосферы и у поверхности Земли будет неодинаков. На основании теоретических расчетов и наблюдений установлено, что на границе атмосферы на долю ультрафиолетовой радиации приходится 5%, на видимые лучи - 52% и на инфракрасные - 43%. У земной же поверхности (при высоте Солнца 40°) ультрафиолетовые лучи составляют только 1%, видимые - 40%, а инфракрасные - 59%.

Интенсивность солнечной радиации. Под интенсивностью прямой солнечной радиации понимают количество тепла в калориях, получаемого в 1 мин. от лучистой энергии Солнца поверхностью в 1 см 2 , расположенной перпендикулярно к солнечным лучам.

Для измерения интенсивности прямой солнечной радиации применяются специальные приборы - актинометры и пиргелиометры; величина рассеянной радиации определяется пиранометром. Автоматическая регистрация продолжительности действия солнечной радиации производится актинографами и гелиографами. Спектральная интенсивность солнечной радиации определяется спектроболографом.

На границе атмосферы, где исключено поглощающее и рассеивающее воздействие воздушной оболочки Земли, интенсивность прямой солнечной радиации равна приблизительно 2 кал на 1 см 2 поверхности в 1 мин. Эта величина носит название солнечной постоянной. Интенсивность солнечной радиации в 2 кал на 1 см 2 в 1 мин. дает такое большое количество тепла в течение года, что его хватило бы, чтобы расплавить слой льда в 35 м толщиной, если бы такой слой покрывал всю земную поверхность.

Многочисленные измерения интенсивности солнечной радиации дают основание полагать, что количество солнечной энергии, приходящее к верхней границе атмосферы Земли, испытывает колебания в размере нескольких процентов. Колебания бывают периодические и непериодические, связанные, по-видимому, с процессами, происходящими на самом Солнце.

Кроме того, некоторое изменение в интенсивности солнечной радиации происходит в течение года благодаря тому, что Земля в годовом своем вращении движется не по окружности, а по эллипсу, в одном из фокусов которого находится Солнце. В связи с этим меняется расстояние от Земли до Солнца и, следовательно, происходит колебание интенсивности солнечной радиации. Наибольшая интенсивность наблюдается около 3 января, когда Земля находится ближе всего от Солнца, а наименьшая около 5 июля, когда Земля удалена от Солнца на максимальное расстояние.

Колебание интенсивности солнечной радиации по этой причине очень невелико и может представлять только теоретический интерес. (Количество энергии при максимальном расстоянии относится к количеству энергии при минимальном расстоянии, как 100: 107, т. е. разница совершенно ничтожна.)

Условия облучения поверхности земного шара. Уже одна только шарообразная форма Земли приводит к тому, что лучистая энергия Солнца распределяется на земной поверхности весьма неравномерно. Так, в дни весеннего и осеннего равноденствия (21 марта и 23 сентября) только на экваторе в полдень угол падения лучей будет 90° (рис. 30), а по мере приближения к полюсам он будет уменьшаться от 90 до 0°. Таким образом,

если на экваторе количество полученной радиации принять за 1, то на 60-й параллели она выразится в 0,5, а на полюсе будет равна 0.

Земной шар, кроме того, имеет суточное и годовое движение, причем земная ось наклонена к плоскости орбиты на 66°,5. В силу этого наклона между плоскостью экватора и плоскостью орбиты образуется угол в 23°30 г. Это обстоятельство приводит к тому, что углы падения солнечных лучей для одних и тех же широт будут меняться в пределах 47° (23,5+23,5).

В зависимости от времени года меняется не только угол падения лучей, но также продолжительность освещения. Если в тропических странах во все времена года продолжительность дня и ночи приблизительно одинакова, то в полярных странах, наоборот, она очень различна. Так, например, на 70° с. ш. летом Солнце не заходит 65 суток, на 80° с. ш.- 134, а на полюсе -186. В силу этого на Северном полюсе радиация в день летнего солнцестояния (22 июня) на 36% больше, чем на экваторе. Что же касается всего летнего полугодия, то общее количество тепла и света, получаемого полюсом, только на 17% меньше, чем на экваторе. Таким образом, в летнее время в полярных странах продолжительность освещения в значительной мере компенсирует тот недостаток радиации, который является следствием малого угла падения лучей. В зимнее полугодие картина совершенно другая: количество радиации на том же Северном полюсе будет равно 0. В результате за год среднее количество радиации на полюсе оказывается в 2,4 меньше, чем на экваторе. Из всего сказанного следует, что количество солнечной энергии, которое получает Земля путем радиации, определяется углом падения лучей и продолжительностью облучения.

Земная поверхность при отсутствии атмосферы на различных широтах за сутки получала бы следующее количество тепла, выраженное в калориях на 1 см 2 (см. таблицу на стр. 92).

Приведенное в таблице распределение радиации по земной поверхности принято называть солярным климатом. Повторяем, что такое распределение радиации мы имеем только у верхней границы атмосферы.



Ослабление солнечной радиации в атмосфере. До сих пор мы говорили об условиях распределения солнечного тепла по земной поверхности, не принимая во внимание атмосферы. Между тем атмосфера в данном случае имеет огромное значение. Солнечная радиация, проходя через атмосферу, испытывает рассеивание и, кроме того, поглощение. Оба эти процесса вместе ослабляют солнечную радиацию в значительной степени.

Солнечные лучи, проходя через атмосферу, прежде всего испытывают рассеивание (диффузию). Рассеивание создается тем, что лучи света, преломляясь и отражаясь от молекул воздуха и частичек твердых и жидких тел, находящихся в воздухе, отклоняются от прямого пути к действительно «рассеиваются».

Рассеивание сильно ослабляет солнечную радиацию. При увеличений количества водяных паров и особенно пылевых частиц рассеивание увеличивается и радиация ослабляется. В больших городах и пустынных областях, где запыленность воздуха наибольшая, рассеивание ослабляет силу радиации на 30-45%. Благодаря рассеиванию получается тот дневной свет, который освещает предметы, если даже на них непосредственно солнечные лучи не падают. Рассеивание обусловливает и самый цвет неба.

Остановимся теперь на способности атмосферы поглощать лучистую энергию Солнца. Основные газы, входящие в состав атмосферы, поглощают лучистую энергию сравнительно очень мало. Примеси же (водяной пар, озон, углекислый газ и пыль), наоборот, отличаются большой поглотительной способностью.

В тропосфере наиболее значительную примесь составляют водяные пары. Они особенно сильно поглощают инфракрасные (длинноволновые), т. е. преимущественно тепловые лучи. И чем больше водяных паров в атмосфере, тем естественно больше и. поглощение. Количество же водяных паров в атмосфере подвержено большим изменениям. В естественных условиях оно меняется от 0,01 до 4% (по объему).

Очень большой поглотительной способностью отличается озон. Значительная примесь озона, как уже говорилось, находится в нижних слоях стратосферы (над тропопаузой). Озон поглощает ультрафиолетовые (коротковолновые) лучи почти полностью.

Большой поглотительной способностью отличается также и углекислый газ. Он поглощает главным образом длинноволновые, т. е. преимущественно тепловые лучи.

Пыль, находящаяся в воздухе, также поглощает некоторое количество солнечной радиации. Нагреваясь под действием солнечных лучей, она может заметно повысить температуру воздуха.

Из общего количества солнечной энергии, приходящей к Земле, атмосфера поглощает всего около 15%.

Ослабление солнечной радиации путем рассеивания и поглощения атмосферой для различных широт Земли очень различно. Это различие зависит прежде всего от угла падения лучей. При зенитном положении Солнца лучи, падая вертикально, пересекают атмосферу кратчайшим путем. С уменьшением угла падения путь лучей удлиняется и ослабление солнечной радиации становится более значительным. Последнее хорошо видно по чертежу (рис. 31) и приложенной таблице (в таблице величина пути солнечного луча при зенитном положении Солнца принята за единицу).



В зависимости от угла падения лучей изменяется не только количество лучей, но также и их качество. В период, когда Солнце находится в зените (над головой), на ультрафиолетовые лучи приходится 4%, на

видимые - 44% и инфракрасные - 52%. При положении Солнца у горизонта ультрафиолетовых лучей совсем нет, видимых 28% и инфракрасных 72%.

Сложность влияния атмосферы на солнечную радиацию усугубляется еще тем, что пропускная ее способность очень сильно меняется в зависимости от времени года и состояния погоды. Так, если бы небо все время оставалось безоблачным, то годовой ход притока солнечной радиации на различных широтах можно было бы графически выразить следующим образом (рис. ,32) Из чертежа ясно видно, что при безоблачном небе в Москве в мае, июне и июле тепла от солнечной радиации получалось бы больше, чем на экваторе. Точно так же во вторую половину мая, в июне и первой половине июля на Северном полюсе тепла получалось бы больше, чем на экваторе и в Москве. Повторяем, что так было бы при безоблачном небе. Но на самом деле этого не получается, потому что облачность в значительной мере ослабляет солнечную радиацию. Приведем пример, изображенный на графике (рис. 33). На графике видно, как много солнечной радиации не доходит до поверхности Земли: значительная часть ее задерживается атмосферой и облаками.

Однако нужно сказать, что тепло, поглощенное облаками, частью идет на нагревание атмосферы, а частью косвенным образом достигает и земной поверхности.

Суточный и годовой ход интенсивности сол нечной радиации. Интенсивность прямой солнечной радиации у поверхности Земли зависит от высоты Солнца над горизонтом и от состояния атмосферы (от ее запыленности). Если бы. прозрачность атмосферы в течение суток была постоянная, то максимальная интенсивность солнечной радиации наблюдалась бы в полдень, а минимальная - при восходе и заходе Солнца. В этом случае график хода суточной интенсивности солнечной радиации был бы симметричным относительно полдня.

Содержание пыли, водяного пара и других примесей в атмосфере непрерывно меняется. В связи с этим меняется прозрачность воздуха и нарушается симметричность графика хода интенсивности солнечной радиации. Нередко, особенно в летний период, в полуденное время, когда происходит усиленное нагревание земной поверхности, возникают мощные восходящие токи воздуха, увеличивается количество водяного пара и пыли в атмосфере. Это приводит к значительному ослаблению солнечной радиации в полдень; максимум интенсивности радиации в этом случае наблюдается в дополуденные или послеполуденные часы. Годовой ход интенсивности солнечной радиации также связан с изменениями высоты Солнца над горизонтом в течение года и с состоянием прозрачности атмосферы в различные сезоны. В странах северного полушария наибольшая высота Солнца над горизонтом бывает в июне месяце. Но в это же время наблюдается и наибольшая запыленность атмосферы. Поэтому максимальная интенсивность обычно приходится не на середину лета, а на весенние месяцы, когда Солнце довольно высоко* поднимается над горизонтом, а атмосфера после зимы остается еще сравнительно чистой. Для иллюстрации годового хода интенсивности солнечной радиации в северном полушарии приводим данные среднемесячных полуденных величин интенсивности радиации в Павловске.



Сумма тепла солнечной радиации. Поверхность Земли в течение дня непрерывно получает тепло от прямой и рассеянной солнечной радиации или только от рассеянной радиации (при пасмурной погоде). Определяют суточную величину тепла на основании актинометрических наблюдений: по учету количества прямой и рассеянной радиации, поступившей на земную поверхность. Определив сумму тепла за каждые сутки, вычисляют и количество тепла, получаемого земной поверхностью за месяц или за год.

Суточное количество тепла, получаемого земной поверхностью от солнечной радиации, зависит от интенсивности радиации и от продолжительности ее действия в течение суток. В связи с этим минимум притока тепла приходится на зиму, а максимум на лето. В географическом распределении суммарной радиации по земному шару наблюдается ее увеличение с уменьшением широты местности. Это положение подтверждается следующей таблицей.



Роль прямой и рассеянной радиации в годовом количестве тепла, получаемом земной поверхностью на разных широтах земного шара, неодинакова. В высоких широтах в годовой сумме тепла преобладает рассеянная радиация. С уменьшением широты преобладающее значение переходит к прямой солнечной радиации. Так, например, в бухте Тихой рассеянная солнечная радиация дает 70% годовой суммы тепла, а прямая радиация только 30%. В Ташкенте, наоборот, прямая солнечная радиация дает 70%, рассеянная только 30%.

Отражательная способность Земли. Альбедо. Как уже указывалось, поверхность Земли поглощает только часть солнечной энергии, поступающей к ней в виде прямой и рассеянной радиации. Другая часть отражается в атмосферу. Отношение величины солнечной радиации, отраженной данной поверхностью, к величине потока лучистой энергии, падающей на эту поверхность, называется альбедо. Альбедо выражается в процентах и характеризует отражательную способность данного участка поверхности.

Альбедо зависит от характера поверхности (свойства почвы, наличия снега, растительности, воды и т. д.) и от величины угла падения лучей Солнца на поверхность Земли. Так, например, если лучи падают на земную поверхность под углом в 45°, то:

Из приведенных примеров видно, что отражающая способность у различных предметов неодинакова. Она всего больше у снега и меньше всего у воды. Однако взятые нами примеры относятся лишь к тем случаям, когда высота Солнца над горизонтом равна 45°. При уменьшении же этого угла отражающая способность увеличивается. Так, например, пои высоте Солнца в 90° вода отражает только 2%, при 50° - 4%, при 20°-12%, при 5° - 35-70% (в зависимости от состояния водной поверхности).

В среднем при безоблачном небе поверхность земного шара отражает 8% солнечной радиации. Кроме того, 9% отражает атмосфера. Таким образом, земной шар в целом при безоблачном небе отражает 17% падающей на него лучистой энергии Солнца. Если же небо покрыто облаками, то от них отражается 78% радиации. Если взять естественные условия, исходя из того соотношения между безоблачным небом и небом, покрытым облаками, которое наблюдается в действительности, то отражательная способность Земли в целом равна 43%.

Земная и атмосферная радиация. Земля, получая солнечную энергию, нагревается и сама становится источником излучения тепла в мировое пространство. Однако лучи, испускаемые земной поверхностью, резко отличаются от солнечных лучей. Земля излучает лишь длинноволновые (λ 8-14 μ) невидимые инфракрасные (тепловые) лучи. Энергия, излучаемая земной поверхностью, называется земной радиацией. Излучение Земли происходит и. днем и ночью. Интенсивность излучения тем больше, чем выше температура излучающего тела. Земное излучение определяется в тех же единицах, что и солнечное, т. е. в калориях с 1 см 2 поверхности в 1 мин. Наблюдения показали, что величина земного излучения невелика. Обычно она достигает 15-18 сотых калории. Но, действуя непрерывно, она может дать значительный тепловой эффект.

Наиболее сильное земное излучение получается при безоблачном небе и хорошей прозрачности атмосферы. Облачность (особенно низкие облака) значительно уменьшает земное излучение и часто доводит его до нуля. Здесь можно сказать, что атмосфера вместе с облаками является хорошим «одеялом», предохраняющим Землю от чрезмерного остывания. Части атмосферы подобно участкам земной поверхности излучают энергию в соответствии с их температурой. Эта энергия носит название атмосферной радиации. Интенсивность атмосферной радиации зависит от температуры излучающего участка атмосферы, а также от количества водяных паров и углекислого газа, содержащихся в воздухе. Атмосферная радиация относится к труппе длинноволновой. Распространяется она в атмосфере во всех направлениях; некоторое количество ее достигает земной поверхности и поглощается ею, другая часть уходит в межпланетное пространство.

О приходе и расходе энергии Солнца на Земле. Земная поверхность, с одной стороны, получает солнечную энергию в виде прямой и рассеянной радиации, а с другой стороны, теряет часть этой энергии в виде земной радиации. В результате прихода и расхода солнечной" энергии получается какой-то результат. В одних случаях этот результат может быть положительным, в других отрицательным. Приведем примеры того и другого.

8 января. День безоблачный. На 1 см 2 земной поверхности поступило за сутки 20 кал прямой солнечной радиации и 12 кал рассеянной радиации; всего, таким образом, получено 32 кал. За это же время в силу излучения 1 см? земной поверхности потерял 202 кал. В результате, выражаясь языком бухгалтерии, в балансе имеется потеря 170 кал (отрицательный баланс).

6 июля. Небо почти безоблачно. От прямой солнечной радиации получено 630 кал, от рассеянной радиации 46 кал. Всего, следовательно, земная поверхность получила на 1 см 2 676 кал. Путем земного излучения потеряно 173 кал. В балансе прибыль на 503 кал (баланс положительный).

Из приведенных примеров, помимо всего прочего, совершенно ясно, почему в умеренных широтах зимой холодно, а летом тепло.

Использование солнечной радиации для технических и бытовых целей. Солнечная радиация является неисчерпаемым природным источником энергии. О величине солнечной энергии на Земле можно судить по такому примеру: если, например, использовать тепло солнечной радиации, падающей только на 1/10 часть площади СССР, то можно получить энергию, равную работе 30 тыс. Днепрогэсов.

Люди издавна стремились использовать даровую энергию солнечной радиации для своих нужд. К настоящему времени создано много различных гелиотехнических установок, работающих на использовании солнечной радиации и получивших большое применение в промышленности и для удовлетворения бытовых нужд населения. В южных районах СССР в промышленности и в коммунальном хозяйстве на основе широкого использования солнечной радиации работают солнечные водонагреватели, кипятильники, опреснители соленой воды, гелиосушилки (для сушки фруктов), кухни, бани, теплицы, аппараты для лечебных целей. Широко используется солнечная радиация на курортах для лечения и укрепления здоровья людей.

Солнечная радиация - это вся энергия Солнца, поступающая на Землю.

Та часть солнечной радиации, которая достигает поверхности Земли без препятствий, называется прямой радиацией. Максимально возможное количество прямой радиации получает единица площади, расположенная перпендикулярно к солнечным лучам. Если солнечные лучи проходят через облака и водяной пар, то это рассеянная радиация.

Количественной мерой солнечной радиации, поступающей на некоторую поверхность, служит энергетическая освещенность, или плотность потока радиации, т.е. количество лучистой энергии, падающей на единицу площади в единицу времени. Энергетическая освещенность измеряется в Вт/м2.

Количество солнечной радиации зависит от:

1) угла падения солнечных лучей

2) продолжительности светлого времени суток

3) облачности.

В атмосфере поглощается около 23% прямой солнечной радиации. Причем поглощение это избирательное: разные газы поглощают радиацию в разных участках спектра и в разной степени.

На верхнюю границу атмосферы солнечная радиация приходит в виде прямой радиации. Около 30% падающей на Землю прямой солнечной радиации отражается назад в космическое пространство. Остальные 70% поступают в атмосферу.

Самое большое количество солнечной радиации получают пустыни, лежащие вдоль линий тропиков. Солнце там поднимается высоко и погода почти весь год безоблачная.

Над экватором в атмосфере много водяного пара, который формирует плотную облачность. Пар и облачность поглощает большую часть солнечной радиации.

Полярные районы получают меньше всего радиации, там солнечные лучи почти скользят по поверхности Земли.

Подстилающая поверхность отражает радиацию по-разному. Тёмные и неровные поверхности отражают мало радиации, а светлые и гладкие хорошо отражают.

Море в шторм отражает меньше радиации, чем море в штиль.

Альбедо (лат. albus -- белый) - способность поверхности отражать радиацию.

Географическое распределение суммарной радиации

Распределение годовых и месячных количеств суммарной солнечной радиации по земному шару зонально: изолинии потока радиации на картах не совпадают с широтными кругами. Отклонения эти объясняются тем, что на распределение радиации по земному шару оказывают влияние прозрачность атмосферы и облачность.

Годовые количества суммарной радиации особенно велики в малооблачных субтропических пустынях. Зато над приэкваториальными лесными областями с их большой облачностью они снижены. К более высоким широтам обоих полушарий годовые количества суммарной радиации убывают. Но затем они снова растут -- мало в Северном полушарии, но весьма значительно над малооблачной и снежной Антарктидой. Над океанами суммы радиации ниже, чем над сушей.

Радиационный баланс земной поверхности за год положительный повсюду на Земле, кроме ледяных плато Гренландии и Антарктиды. Это означает, что годовой приток поглощенной радиации больше, чем эффективное излучение за то же время. Но это вовсе не значит, что земная поверхность год от года становится все теплее. Избыток поглощенной радиации над излучением уравновешивается передачей тепла от земной поверхности в воздух путем теплопроводности и при фазовых преобразованиях воды (при испарении с земной поверхности и последующей конденсации в атмосфере).

Для земной поверхности не существует радиационного равновесия в получении и отдаче радиации, но существует тепловое равновесие: приток тепла к земной поверхности как радиационными, так и нерадиационными путями равен его отдаче теми же способами.

Как известно, радиационный баланс является разностью между суммарной радиацией и эффективным излучением. Эффективное излучение земной поверхности распределяется по земному шару более равномерно, чем суммарная радиация. Дело в том, что с ростом температуры земной поверхности, т. е. с переходом к более низким широтам, растет собственное излучение земной поверхности; однако одновременно растет и встречное излучение атмосферы вследствие большего влагосодержания воздуха и более высокой его температуры. Поэтому изменения эффективного излучения с широтой не слишком велики.