Центр величины и центр тяжести судна. Вычисление основных метапараметров инварниантно к различным судам

Вычисление основных метапараметров
инвариантно к различным судам

Метацентрическая высота - критерий остойчивости судна. Представляет собой возвышение метацентра над центром тяжести плавающего тела. Чем больше этот параметр, тем выше начальная остойчивость судна. При приобретении отрицательного значения метацентрической высоты судно утрачивает способность плавать без крена. Ответить на вопрос «перевернется ли судно, имеющее отрицательную метацентрическую высоту» не представляется возможным, так как метацентрическая теория остойчивости верна лишь при наклонениях судна, не превышающих 10 градусов.

Тем не менее, в Правилах классификационных обществ, осуществляющих надзор за технической эксплуатацией судов (Российский Речной Регистр, Российский Морской Регистр Судоходства и др.), запрещена эксплуатация судов, имеющих метацентрическую высоту менее 0,2 м. Характерным примером тела, имеющего нулевую метацентрическую высоту, является симметричный плавающий бочонок. При нахождении в спокойной воде такой бочонок будет совершать вращение вдоль продольной оси под воздействием любых внешних сил (например ветра).

Силы поддержания D равны (водоизмещению) - весу судна и груза

Силы тяжести судна P равны весу судна и груза (водоизмещению), приложенномув приведенной точке тяжести судна.

Вследствие изменения формы погруженной в воду части корпуса распределение гидростатических сил давления, действующих на эту часть
корпуса, также изменится. Центр величины судна переместится в сторонукрена и перейдет из точки С в точку С 1 .Сила поддержания D", оставаясь неизменной, будет направлена вертикальновверх перпендикулярно новой действующей ватерлинии, а ее линия действия пересечет ДП в первоначальном поперечном метацентре m . Положение центра тяжести судна остается неизменным, а сила веса Р будет перпендикулярна новой ватерлинии В 1 Л 1 . Таким образом, силы Р и D", параллельные друг другу, не лежат на одной вертикали и, следовательно, образуют пару сил с плечом GK, где точка К - основание перпендикуляра, опущенного из точки G на направление действия силы поддержания. Пара сил, образованная весом судна и силой поддержания, стремящаясявозвратить судно в первоначальное положение равновесия, называетсявосстанавливающей парой, а момент этой пары - восстанавливающим моментом M θ .


М θ = D" × G К (1).


Плечо GK называют плечом воc станавливающего момента или плечом статического момента и обозначают буквой l ст . Угол между линией действия силы поддержания и ДП равен углу крена θ , поскольку стороны этого угла перпендикулярны к ватерлиниям ВЛ и В 1 Л 1 . С другой стороны, отрезок mG является поперечной метацентрическойвысотой, которая обозначается буквой h . Тогда из прямоугольного треугольника mGK следует:
GK = mG × sin θ = h × sin θ . (2)

Подставив равентсво (2) в (1), находим выражение для восстанавливающего момента M θ при малых углах крена:

М θ = D" × h × sin (3)

При малых углах крена вместо sin θ в формулу (3) можно подставить θ в радианах. Тогда выражение (3) примет вид:

М θ = D" × h × θ (4)

Формулы (3) и (4) являются метацентрическими формулами поперечной остойчивости. Как видно из метацентрической формулы поперечной остойчивости,
восстанавливающий момент пропорционален поперечной метацентрическойвысоте h . Каталось бы, следует стремиться к тому, чтобы судно имело возможно большее h . Однако чрезмерное увеличение h неблагоприятносказывается на характере качки судна - она становится весьмастремительной, что вызывает большие моменты инерции. Это отрицательносказывается на состоянии экипажа, а главное при такой качке большевероятность смещения груза и потеря остойчивости, чем при плавной качке.

ИЗМЕНЕНИЕ ОСТОЙЧИВОСТИ СУДНА ПРИ ПЕРЕМЕЩЕНИИ ГРУЗА ПО ВЕРТИКАЛИ



Допустим, что на судне, сидящем на ровный киль и находящемся в равновесии, перемещен по вертикали груз Р на расстояние l z . Поскольку водоизмещение судна от перемещения груза не меняется, первое условие равновесия будет соблюдено (судно сохранит свою осадку). Согласно известной теореме теоретической механики, Ц.Т. судна переместится в точку G 1 , находящуюся на одной вертикали с прежним положением Ц.Т. судна G. Сама вертикаль пройдет, как и прежде, через Ц.В. судна С. Тем самым будет соблюдено второе условие равновесия, следовательно, при вертикальном перемещении груза судно не изменитсвоего положения равновесия (не появится ни крена ни дифферента). Рассмотрим теперь ичменение начальной поперечной остойчивости. Ввидутого, что форма погруженного в воду корпуса судна и форма площадиватерлинии не изменялись, положение Ц.В. и поперечного метацентра (т. m ) при перемещении груза по вертикали остается неизменным. Перемещаетсятолько Ц.Т. судна из точки G в точку G 1 . Отрезок GG 1 может быть найден с помощью выражения:

GG 1 = (Р × l z ) / D


Если до перемещения груза поперечная метацентрическая высота была h , то после его перемещения она изменится на величину GG 1 . В нашем случае изменение поперечной метацентрической высоты Δh = GG 1 имеет отрицательный знак, т.к. перемещение Ц.Т. судна по направлению кпоперечному метацентру, положение которого, как мы установили, остаетсянеизменным, уменьшает метацентрическую высоту. Следовательно, новое значение поперечной метацентрической высоты будет:
h 1 = h - (Р × l z ) / D (1)

Очевидно, что в случае перемещения груза вниз перед вторым членом правой части уравнения новой метацентрической высоты h 1 , должен быть поставлен знак плюс (+). Из выражения (1) следует, что уменьшение остойчивости суднапропорционально произведению массы груза на его перемещение по высоте.Кроме того, при прочих равных условиях, изменение поперечнойостойчивости будет относительно меньше, у судна с большимводоизмещением, чем у судна с малой силой поддержания D . Поэтому на больших судахперемещение относительно больших грузов безопаснее, чем на малых судах. Может оказаться, что значение GG 1 перемещения вверх Ц.Т. судна будет больше самой величиныh . Тогда начальная поперечнаяостойчивость станет отрицательной, т.е. судно не сможет оставаться впрямом положении.

ОПРЕДЕЛЕНИЕ МЕТАЦЕНТРИЧЕСКОЙ ВЫСОТЫ СУДНА по формуле

h = (P × l y )/(D × tgθ ) = М КР /(D × tgθ )

Затем можно вычислить и аппликату ZG Ц.Т., предварительно определив величину Zm (ось z по направлению ОМ).

Z G = Z m – h

Найдена ошибка для групп (так и не исправили).

Метапараметры для одной поверхности - лодки ФК К-9

(МК: “Мет_высота по формуле.vbs » – без использования метода Met a All )

Схема решения задачи. Также задаем судно по варианту, удаляем из структурылишние объекты, оставляя только Поли-поверхность , делаем ее активнойи обращаемся к МК Мета все

Например для ship 1 получимсначала вывод на экран:

Затем получим изображение самого судно сдифферентом. Метацентр – точка М с. Мета-высота – расстояние М с – G0. Чтобы проверить правильно ли вычислено плечо – расстояние по горизонтали от G0 догоризонтальной прямой Pc – Mc , можно воспользоватьсядиалогом задания окружности.

Видим, что все соответствует

Рс – центр поддерживающей силы смоченнойповерхности (ниже линии погружения).

Чтобыпривести в равновесие судно, надо,чтобы Pc-Мс лежали на одной вертикали. В этот момент получим крен равновесия судна

Метапараметры для одной поверхности - лодки ФК К-9

(МК: “Мет_высота по формуле.vbs » – без использования метода Met a All )

Вращая сферу (справа), расположение центра поддерживающей силы С1 ос тается в том же месте.

Вся сфера:

Центр = (-3.55013e-017, 2.28505e-017, 1.20472e-016)

В группе нет тел

Площадь = 12.5034

Подводная часть (как тело):

Центр = (-0.00942139, -0.695146, -0.000790239)

Объём = 0.573678

В системе Вектор реализованы расчеты для групп. Камнем преткновения были расчеты объемов и ЦТ, в случае преобразования групп. Сейчас эта проблема решена. Одно условие, что поверхность (одна или несколько) должны быть расположены в группе.

Объем групп


Центр = (-0.449362, 0.243291, 0.00259662)

Объём = 14.1873

Расчет ЦТ группы объектов и поддерживающей силы выполняет МК «Объем под водой».


В это случае важно, чтобы поддерживающая сила находилась на одной вертикали с силой веса. В данном случае дифферент будет на корму. Вращая группу против часовой стрелки можно добиться равновесия.

В этом случае группа в равновесие, но с дифферентом на корму в 2.5 градуса

17-я макрокоманда «Мета пример» при заданным дополнительной грузе его ЦТ С2 рассчитывает общий центр тяжести ЦТо и центр силы поддержания С1.

Если C1 и ЦТо , находятся на одной вертикали, значит система уравновешена .

Приведенные три макрокомандыпроверены на всех объектах, которые можно взять в разделе «Готовые макрокоманды».

Чтобы уравновесить систему, надо чтобы С2 находилась под ЦТо . В МК «Мета пример» надо изменить угол поворота системы групп не на -27 градусов, а например -7.


Два контейнера находятся в равновесии
– в таком положении будут находится на плаву


Увеличено: Видим, что С1 по вертикали почти совпадает с ЦТо

§ 12. Мореходные качества судов. Часть 1

Мореходными качествами должны обладать как гражданские суда, так и военные корабли.

Изучением этих качеств с применением математического анализа занимается специальная научная дисциплина - теория судна .

Если математическое решение вопроса невозможно, то прибегают к опыту, чтобы найти необходимую зависимость и проверить выводы теории на практике. Только после всестороннего изучения и проверки на опыте всех мореходных качеств судна приступают к его созданию.

Мореходные качества в предмете «Теория судна» изучаются в двух разделах: статике и динамике судна . Статика изучает законы равновесия плавающего судна и связанные с этим качества: плавучесть, остойчивость и непотопляемость. Динамика изучает судно в движении и рассматривает такие его качества, как управляемость, качку и ходкость.

Познакомимся с мореходными качествами судна.

Плавучестью судна называется его способность держаться на воде по определенную осадку, неся предназначенные грузы в соответствии с назначением судна.

На плавающее судно всегда действуют две силы: а) с одной стороны, силы веса , равные сумме веса самого судна и всех грузов на нем (вычисленные в тоннах); равнодействующая сил веса приложена в центре тяжести судна (ЦТ) в точке G и всегда направлена по вертикали вниз; б) с другой стороны, силы поддержания , ил и силы плавучести (выраженные в тоннах), т. е. давление воды на погруженную часть корпуса, определяемое произведением объема погруженной части корпуса на объемный вес воды, в которой судно плавает. Если эти силы выразить равнодействующей, приложенной в центре тяжести подводного объема судна в точке С, называемой центром величины (ЦВ), то эта равнодействующая при всех положениях плавающего судна всегда будет направлена по вертикали вверх (рис. 10).

Объемным водоизмещением называется объем погруженной части корпуса, выраженный в кубических метрах. Объемное водоизмещение служит мерой плавучести, а вес вытесняемой им воды называется весовым водоизмещением D) и выражается в тоннах.

По закону Архимеда вес плавающего тела равен весу объема жидкости, вытесненной этим телом,

Где у - объемный вес забортной воды, т/м 3 , принимаемый в расчетах равным 1,000 для пресной воды и 1,025 - для морской воды.

Рис. 10. Силы, действующие на плавающее судно, и точки приложения равнодействующих этих сил.


Так как вес плавающего судна Р всегда равен его весовому водоизмещению D, а их равнодействующие направлены противоположно друг другу по одной вертикали, и если обозначить координаты точки G и С по длине судна соответственно x g и х c , по ширине у g и у c и по высоте z g и z c , то условия равновесия плавающего судна можно сформулировать следующими уравнениями:

Р = D; x g = х c .

Вследствие симметрии судна относительно ДП очевидно, что точки G и С должны лежать в этой плоскости, тогда

Y g = y c = 0.

Обычно центр тяжести надводных судов G лежит выше центра величины С, в таком случае

Иногда объем подводной части корпуса удобнее выразить через главные размерения судна и коэффициент общей полноты, т. е.

Тогда весовое водоизмещение может быть представлено в виде

Если обозначить через V n полный объем корпуса до верхней палубы, при условии водонепроницаемости закрытия всех бортовых отверстий, то получим

Разность V n - V, представляющая некоторый объем водонепроницаемого корпуса выше грузовой ватерлинии, носит название запаса плавучести. При аварийном попадании воды внутрь корпуса судна увеличится его осадка, но судно останется на плаву, благодаря запасу плавучести. Таким образом, запас плавучести будет тем больше, чем больше высота надводного непроницаемого борта. Следовательно, запас плавучести является важной характеристикой судна, обеспечивающей его непотопляемость. Он выражается в процентах от нормального водоизмещения и имеет следующие минимальные значения: для речных судов 10-15%, для танкеров 10-25 %, для сухогрузных судов 30-50%, для ледоколов 80-90%, а для пассажирских судов 80-100%.


Рис. 11. Строевая по шпангоутам


Вес судна Р (весовая нагрузка) И координаты центра тяжести определяются расчетом, учитывающим вес каждой детали корпуса, механизмов, предметов оборудования, снабжения, запасов, грузов, людей, их багажа и всего находящегося на судне. Для упрощения вычислений предусматривается объединение отдельных наименований по специальности в статьи, подгруппы, группы и разделы нагрузки. Для каждого из них подсчитывается вес и статический момент.

Учитывая, что момент равнодействующей силы равен сумме моментов составляющих сил относительно той же плоскости, после суммирования по всему судну весов и статических моментов, определяют координаты центра тяжести судна G. Объемное водоизмещение, а также координаты центра величины С по длине от миделя х c и по высоте от основной линии z c определяют по теоретическому чертежу методом трапеции в табличной форме.

Для этой же цели пользуются вспомогательными кривыми, так называемыми строевыми, вычерченными также по данным теоретического чертежа.

Различают две кривые: строевую по шпангоутам и строевую по ватерлиниям.

Строевая по шпангоутам (рис. 11) характеризует распределение объема подводной части корпуса по длине судна. Она строится следующим способом. Пользуясь методом приближенных вычислений, определяют по теоретическому чертежу площади погруженной части каждого шпангоута (w). По оси абсцисс откладывают в выбранном масштабе длину судна и на нее наносят положение шпангоутов теоретического чертежа. На ординатах, восстановленных из этих точек, откладывают в определенном масштабе соответствующие площади вычисленных шпангоутов.

Концы ординат соединяют плавной кривой, которая и является строевой по шпангоутам.


Рис. 12. Строевая по ватерлиниям.


Строевая по ватерлинии (рис. 12) характеризует распределение объема подводной части корпуса по высоте судна. Для ее построения по теоретическому чертежу подсчитывают площади всех ватерлиний (5). Эти площади в избранном масштабе откладывают по соответствующим горизонталям, расположенным по осадкам судна, в соответствии с положением данной ватерлинии. Полученные точки соединяют плавной кривой, которая и является строевой по ватерлиниям.


Рис. 13. Кривая грузового размера.


Эти кривые служат следующими характеристиками:

1) площади каждой из строевых выражают в соответствующем масштабе объемное водоизмещение судна;

2) абсцисса центра тяжести площади строевой по шпангоутам, измеренная в масштабе длины судна, равна абсциссе центра величины судна х c ;

3) ордината центра тяжести площади строевой по ватерлиниям, измеренная в масштабе осадок, равна ординате центра величины судна z c . Грузовой размер представляет собой кривую (рис. 13), характеризующую объемное водоизмещение судна V в зависимости от его осадки Т. По этой кривой можно определить водоизмещение судна в зависимости от его осадки или решить обратную задачу.

Эта кривая строится в системе прямоугольных координат на основании предварительно вычисленных объемных водоизмещении по каждую ватерлинию теоретического чертежа. На оси ординат в выбранном масштабе откладывают осадки судна по каж- дую из ватерлиний и через них проводят горизонтали, на которых, также в определенном масштабе, откладывают значение водоизмещения, полученное для соответствующих ватерлиний. Концы полученных отрезков соединяют плавной кривой, которая и называется грузовым размером.

Пользуясь грузовым размером, можно определить изменение средней осадки от приема или расходования груза или по заданному водоизмещению определить осадку судна и т. п.

Остойчивостью называется способность судна противостоять, силам, вызвавшим его наклонение, и после прекращения действия этих сил возвращаться в первоначальное положение.

Наклонения судна возможны по разным причинам: от действия набегающих волн, из-за несимметричного затопления отсеков при пробоине, от перемещения грузов, давления ветра, из-за приема или расходования грузов и пр.

Наклонение судна в поперечной плоскости называют креном , а в продольной плоскости - дифферентом ; углы, образующиеся при этом, обозначают соответственно O и y,

Различают начальную остойчивость , т. е. остойчивость при малых углах крена, при которых кромка верхней палубы начинает входить в воду (но не более 15° для высокобортных надводных судов), и остойчивость при больших наклонениях .

Представим себе, что под действием внешних сил судно получило крен на угол 9 (рис. 14). Вследствие этого объем подводной части судна сохранил свою величину, но изменил форму; по правому борту в воду вошел дополнительный объем, а по левому борту равновеликий ему объем вышел из воды. Центр величины переместился из первоначального положения С в сторону крена судна, в центр тяжести нового объема - точку С 1 . При наклонном положении судна сила тяжести Р, приложенная в точке G, и сила поддержания D, приложенная в точке С, оставаясь перпендикулярными к новой ватерлинии В 1 Л 1 образуют пару сил с плечом GK, являющимся перпендикуляром, опущенным из точки G на направление сил поддержания.

Если продолжить направление силы поддержания из точки С 1 до пересечения с ее первоначальным направлением из точки С, то на малых углах крена, соответствующих условиям начальной остойчивости, эти два направления пересекутся в точке М, называемой поперечным метацентром .

Расстояние между метацентром и центром величины МС называется поперечным мета центрическим радиусом , обозначаемым р, а расстояние между точкой М и центром тяжести судна G - поперечной метацентрической высотой h 0 . На основании данных рис. 14 можно составить тождество

H 0 = p + z c - z g .

В прямоугольном треугольнике GMR угол у вершины М будет равен углу 0. По его гипотенузе и противолежащему углу можно определить катет GK, являющийся плечо м восстанавливающей судно пары GK=h 0 sin 8, а восстанавливающий момент будет равен Мвосст = DGK. Подставляя значения плеча, получим выражение

Мвосст = Dh 0 * sin 0,


Рис. 14. Силы, действующие при крене судна.


Взаимное положение точек М и G позволяет установить следующий признак, характеризующий поперечную остойчивость: если метацентр расположен выше центра тяжести, то восстанавливающий момент положителен и стремится вернуть судно в исходное положение, т. е. при накренении судно будет остойчиво, наоборот, если точка М находится ниже точки G, то при отрицательном значении h 0 момент отрицателен и будет стремиться увеличивать крен, т. е. в этом случае судно неостойчиво. Возможен случай, когда точки М и G совпадают, силы Р и D действуют по одной вертикальной прямой, пары сил не возникает, и восстанавливающий момент равен нулю: тогда судно надо считать неостойчивым, так как оно не стремится вернуться в первоначальное положение равновесия (рис. 15).

Метацентрическую высоту для характерных случаев нагрузки вычисляют в процессе проектирования судна, и она служит ме- рой остойчивости. Значение поперечной метацентрической высоты для основных типов судов лежит в пределах 0,5-1,2 м и лишь у ледоколов достигает 4,0 м.

Для увеличения поперечной остойчивости судна необходимо снижать его центр тяжести. Это чрезвычайно важный фактор всегда надо помнить, особенно при эксплуатации судна, и вести строгий учет за расходованием топлива и воды, хранящихся в междудонных цистернах.

Продольная метацентрическая высота H 0 рассчитывается аналогично поперечной, но так как ее величина, выражается в десятках или даже в сотнях метров, всегда весьма велика - от одной до полутора длин судна, то после проверочного расчета продольную остойчивость судна практически не рассчитывают, ее величина интересна только в случае определения осадки судна носом или кормой при продольных перемещениях грузов или при затоплении отсеков по длине судна.


Рис. 15. Поперечная остойчивость судна в зависимости от расположения грузов: а - положительная остойчивость; б - положение равновесия - судно неостойчиво; в - отрицательная остойчивость.


Вопросам остойчивости судна придается исключительно важное значение, и поэтому обычно, кроме всех теоретических вычислений, после постройки судна проверяют истинное положение его центра тяжести путем опытного кренования, т. е. поперечного наклонения судна путем перемещения груза определенного веса, называемого кренбалластом .

Все полученные ранее выводы, как уже упоминалось, практически справедливы при начальной остойчивости, т. е. при крене на малые углы.

При расчетах поперечной остойчивости на больших углах крена (продольные наклонения на практике не бывают большими) определяют переменные положения центра величины, метацентра, поперечного метацентрического радиуса и плеча восстанавливающего момента GK для различных углов крена судна. Такой расчет делают начиная от прямого положения через 5- 10° до того угла крена, когда восстанавливающее плечо превращается в нуль и судно приобретает отрицательную остойчивость.

По данным этого расчета для наглядного представления об остойчивости судна на больших углах крена строят диаграмму статической остойчивости (ее также называют диаграммой Рида), показывающую зависимость плеча статической остойчивости (GK) или восстанавливающего момента Мвосcт от угла крена 8 (рис. 16). На этой диаграмме по оси абсцисс откладывают углы крена, а по оси ординат - значение восстанавливающих моментов или плечи восстанавливающей пары, так как при равнообъемных наклонениях, при которых водоизмещение судна D остается постоянным, восстанавливающие моменты пропорциональны плечам остойчивости.


Рис. 16. Диаграмма статической остойчивости.


Диаграмму статической остойчивости строят для каждого характерного случая нагрузки судна, и она следующим образом характеризует остойчивость судна:

1) на всех углах, при которых кривая расположена над осью абсцисс, восстанавливающие плечи и моменты имеют положительное значение, и судно имеет положительную остойчивость. При тех углах крена, когда кривая расположена под осью абсцисс, судно будет неостойчивым;

2) максимум диаграммы определяет предельный угол крена 0 мах и предельный кренящий момент при статическом наклонении судна;

3) угол 8, при котором нисходящая ветвь кривой пересекает ось абсцисс, называется углом заката диаграммы . При этом угле крена восстанавливающее плечо становится равным нулю;

4) если на оси абсцисс отложить угол, равный 1 радиану (57,3°), и из этой точки восставить перпендикуляр до пересечения с касательной, проведенной к кривой из начала координат, то этот перпендикуляр в масштабе диаграммы будет равен начальной метацентрической высоте h 0 .

Большое влияние на остойчивость оказывают подвижные, т. е. незакрепленные, а также жидкие и сыпучие грузы, имеющие свободную (открытую) поверхность. При наклонении судна эти грузы начинают перемещаться в сторону крена и, как следствие, центр тяжести всего судна уже не будет находиться в неподвижной точке G, а начнет тоже перемещаться в ту же сторону, вызывая уменьшение плеча поперечной остойчивости, что равносильно уменьшению метацентрической высоты со всеми вытекающими из этого последствиями. Для предотвращения таких случаев все грузы на судах должны быть закреплены, а жидкие или сыпучие должны быть погружены в емкости, исключающие всякое переливание или пересыпание грузов.

При медленном действии сил, создающих кренящий момент, судно, наклоняясь, остановится тогда, когда кренящий и восстанавливающий моменты сравняются. При внезапном действии внешних сил, таких, как порыв ветра, натяжение буксира на борт, качка, бортовой залп из орудий и т. п., судно, наклоняясь, приобретает угловую скорость и даже с прекращением действия этих сил будет продолжать крениться по инерции на дополнительный угол до тех пор, пока не израсходуется вся его кинетическая энергия (живая сила) вращательного движения судна и его угловая скорость не превратится в нуль. Такое наклонение судна под действием внезапно приложенных сил называется динамическим наклонением . Если при статическом кренящем моменте судно плавает, имея лишь некоторый крен 0 СТ, то в случае динамического действия того же кренящего момента оно может опрокинуться.

При анализе динамической остойчивости для каждого водоизмещения судна строят диаграммы динамической остойчивости , ординаты которых представляют в определенном масштабе площади, образованные кривой моментов статической остойчивости для соответствующих углов крена, т. е. выражают работу восстанавливающей пары при наклонении судна на угол 0, выраженный в радианах. При вращательном движении, как известно, работа равна произведению момента на угол поворота, выраженный в радианах,

Т 1 = М kp 0.

По этой диаграмме все вопросы, связанные с определением динамической остойчивости, можно решить следующим образом (рис. 17).

Угол крена при динамически приложенном кренящем моменте можно найти, нанеся на диаграмму в том же масштабе график работы кренящей пары; абсцисса точки пересечения этих двух графиков дает искомый угол 0 ДИН.

Если в частном случае крепящий момент имеет постоянное значение, т. е. М кр = const, то работа будет выражаться

Т 2 = М kp 0.

А график будет иметь вид прямой, проходящей через начало координат.

Для того, чтобы построить эту прямую на диаграмме динамической остойчивости, необходимо отложить по оси абсцисс угол, равный радиану, и провести из полученной точки ординату. Отложив на ней в масштабе ординат величину М кр в виде отрезка Nn (рис. 17), надо провести прямую ON, которая является искомым графиком работы кренящей пары.


Рис. 17. Определение угла крена и предельного динамического наклонения по диаграмме динамической остойчивости.


На этой же диаграмме показан угол динамического наклонения 0 ДИН, определяемый как абсцисса точки пересечения обоих графиков.

С увеличением момента М кр секущая ON может занять предельное положение, обратившись во внешнюю касательную ОТ, проведенную из начала координат к диаграмме динамической остойчивости. Таким образом, абсцисса точки касания будет искодинмах мым предельным углом динамических наклонений 0 Ордината этой касательной, соответствующая радиану, выражает предельный кренящий момент при динамических наклонениях М крмах.

При плавании судно часто подвергается динамическому воздействию внешних сил. Поэтому умение определить динамический кренящий момент при решении вопроса об остойчивости судна имеет большое практическое значение.

Изучение причин гибели судов приводит к выводу, что в основном суда гибнут из-за потери остойчивости. Для ограничения потери остойчивости в соответствии с различными условиями плавания, Регистром Союза ССР разработаны Нормы остойчивости судов транспортного и промыслового флота. В этих нормах основным показателем является способность судна сохранять положительную остойчивость при совместном действии на него бортовой качки и ветра. Судно отвечает основному требованию Норм остойчивости, если при наихудшем варианте загрузки его М КР остается меньше M ОПР.

При этом минимальный опрокидывающий момент судна определяется по диаграммам статической или динамической остойчивости с учетом влияния свободной поверхности жидких грузов, бортовой качки и элементов расчета парусности судна для различных случаев нагрузки судна.

Нормами предусматривается целый ряд требований к остойчивости, например: M КР


метацентрическая высота должна иметь положительное значение, угол заката диаграммы статической остойчивости должен быть не менее 60°, а с учетом обледенения - не менее 55° и т. п. Обязательное соблюдение этих требований при всех случаях нагрузки дает право считать судно остойчивым.

Непотопляемостью судна называется его способность сохранять плавучесть и остойчивость после затопления части внутренних помещений водой, поступившей из-за борта.

Непотопляемость судна обеспечивается запасом плавучести и сохранением положительной остойчивости при частично затопленных помещениях.

Если судно получило пробоину в наружном корпусе, то количество воды Q, вливающееся через нее, характеризуется выражением


где S - площадь пробоины, м²;

G - 9,81 м/сек²

Н - отстояние центра пробоины от ватерлинии, м.

Даже при незначительной пробоине количество воды, поступающее внутрь корпуса, будет так велико, что справиться с нею отливные насосы не в состоянии. Поэтому водоотливные средства ставят на судне исходя из расчета только удаления воды, поступающей уже после заделки пробоины или через неплотности в соединениях.

Чтобы предотвратить распространение по судну воды, вливающейся в пробоину, предусматривают конструктивные мероприятия: корпус делят на отдельные отсеки водонепроницаемыми переборками и палубами . При таком делении в случае получения пробоины затопится один или несколько ограниченных отсеков, отчего увеличится осадка судна и соответственно уменьшится высота надводного борта и запас плавучести судна.

Вперед
Оглавление
Назад

МЕТАЦЕНТР

МЕТАЦЕНТР

(Metacenter) - точка пересечения нормалей к плоскостям ватерлиний корабля при наклонении его, проведенных через центры тяжести подводных объемов (центры величины). Различают поперечный М. - при наклонениях судна около продольной его оси и продольный М. - при наклонении около поперечной оси. Для всякого судна (как надводного, так и подводного) М. должен находиться выше центра тяжести.

Самойлов К. И. Морской словарь. - М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР , 1941

Метацентр

центр кривизны траектории перемещения центра величины при наклонении корабля (плавающего тела). При наклонении с борта на борт положение метацентр отличается от положения метацентра при наклонении с носа на корму. Соответственно различают поперечный и продольный метацентр. Если центр тяжести судна лежит ниже метацентра (в первую очередь поперечного), то при наклонении судна на него будет действовать пара сил, возвращающая его в первоначальное положение. Поэтому метацентр следует рассматривать как предел, до которого можно поднимать центр тяжести судна (например, при расходовании запасов, разгрузке), не лишая последнее положительной остойчивости.

EdwART. Толковый Военно-морской Словарь , 2010


Синонимы :

Смотреть что такое "МЕТАЦЕНТР" в других словарях:

    Метацентр … Орфографический словарь-справочник

    - (греч., от meta, и kentron центр). Центр тяжести при устойчивом равновесии, находящийся обыкновенно вне настоящего центра. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МЕТАЦЕНТР греч., от meta, и kentron, центр … Словарь иностранных слов русского языка

    Точка, от положения к рой зависит устойчивость равновесия (остойчивость) плавающего тела. При равновесии на плавающее тело, кроме силы тяжести Р, приложенной в центре тяжести (ЦТ) тела (рис.), действует ещё выталкивающая сила А, линия действия к… … Физическая энциклопедия

    Точка, от положения которой зависит устойчивость равновесия плавающего тела. Для тела с продольной плоскостью симметрии метацентр точка пересечения с этой плоскостью равнодействующей сил давления жидкости на тело … Большой Энциклопедический словарь

    МЕТАЦЕНТР, метацентра, муж. (от греч. meta вне, за и лат. centrum центр) (физ.). Точка пересечения вертикальной линии, проходящей через центр тяжести плавающего тела (судна), с плоскостью линии погружения (с ватерлинией). Толковый словарь Ушакова … Толковый словарь Ушакова

    Муж., мех. центр тяжести, вне центра объема, величины; | мор. точка взаимного пересеченья отвеса, проходящего чрез центр тяжести судна, и направления бокового давления воды, при наклоне корабля; судно должно всегда так грузиться, чтобы центр… … Толковый словарь Даля

    Сущ., кол во синонимов: 1 точка (100) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Поперечное наклонение плавающего судна. Метацентр обозначен M. Центр величины обозначен B Метацентр (от греч. μετα через и лат. centrum средоточие) центр кривизны траектор … Википедия

В теории поперечной остойчивости рассматриваются наклонения судна, происходящие в плоскости миделя, причем внешний момент, называемый кренящим моментом, также действует в плоскости миделя.

Не ограничиваясь пока малыми наклонениями судна (они будут рассмотрены как частный случай в разделе «Начальная остойчивость»), рассмотрим общий случай накренения судна от действия постоянного во времени внешнего кренящего момента. На практике такой кренящий момент может возникать, например, от действия постоянного по силе ветра, направление которого совпадает с поперечной плоскостью судна – плоскостью миделя. При воздействием этого кренящего момента судно имеет постоянный крен на противоположный борт, величина которого определяется силой ветра и восстанавливающим моментом со стороны судна.

В литературе по теории судна принято совмещать на рисунке сразу два положения судна – прямое и с креном. Накрененному положению соответствует новое положение ватерлинии относительно судна, которому соответствует постоянный погруженный объем, однако, форма подводной части накрененного судна уже не обладает симметрией: правый борт погружен больше левого (Рис.1).

Все ватерлинии, соответствующие одному значению водоизмещения судна (при постоянном весе судна) принято называть равнообъемными .

Точное изображение на рисунке всех равнообъемных ватерлиний сопряжено с большими сложностями расчетного характера. В теории судна существует несколько методик для графического изображения равнообъемных ватерлиний. При очень малых углах крена (при бесконечно малых равнообъемных наклонениях) можно воспользоваться следствием из теоремы Л. Эйлера, согласно которому две равнообъемные ватерлинии, отличающиеся на бесконечно малый угол крена, пересекаются по прямой, проходящей через их общий центр тяжести площади (при конечных наклонениях это утверждение теряет силу, поскольку каждая ватерлиния имеет свой центр тяжести площади).

Схема образования восстанавливающего момента

Если отвлечься от реального распределения сил веса судна и гидростатического давления, заменив их действие сосредоточенными равнодействующими, то приходим к схеме (Рис.1). В центре тяжести судна приложена сила веса, направленная во всех случаях перпендикулярно к ватерлинии. Параллельно ей действует сила плавучести, приложенная в центре подводного объема судна – в так называемом центре величины (точка С ).

Вследствие того, что поведение (и происхождение) этих сил не зависят друг от друга, они уже не действуют вдоль одной линии, а образуют пару сил, параллельных и перпендикулярных действующей ватерлинии В 1 Л 1 . В отношении силы веса Р можно сказать, что она остается вертикальной и перпендикулярной поверхности воды, а накрененное судно отклоняется от вертикали, и лишь условность рисунка требует отклонять вектор силы веса от диаметральной плоскости. Специфику такого подхода легко себе уяснить, если представить ситуацию с закрепленной на судне видеокамерой, дающей на экране поверхность моря, наклоненную на угол, равный углу крена судна.



Полученная пара сил создаёт момент, который принято называть восстанавливающим моментом . Этот момент противодействует внешнему кренящему моменту и является главным объектом внимания в теории остойчивости.

Величина восстанавливающего момента может быть вычислена по формуле (как для любой пары сил) как произведение одной (любой из двух) силы на расстояние между ними, называемое плечом статической остойчивости :

Формула (1) указывает на то, что и плечо и сам момент зависят от угла крена судна, т.е. представляют собой переменные (в смысле крена) величины.

Однако, не при всех случаях направление восстанавливающего момента будет соответствовать изображению на Рис.1.

Если центр тяжести (в результате особенностей размещения грузов по высоте судна, например, при избытке груза на палубе) оказывается довольно высоко, то может возникнуть ситуация, когда сила веса окажется справа от линии действия силы поддержания. Тогда их момент будет действовать в противоположном направлении и будет способствовать накренению судна. Вместе с внешним кренящим моментом они будут опрокидывать судно, поскольку других противодействующих моментов больше нет.

Ясно, что в этом случае следует оценивать эту ситуацию как недопустимую, т. к. судно остойчивостью не обладает. Следовательно, при высоком положении центра тяжести судно может терять это важное мореходное качество – остойчивость.



На морских водоизмещающих судах возможность осуществлять воздействие на остойчивость судна, «управлять» ею, предоставляется судоводителю только путем рационального размещения грузов и запасов по высоте судна, определяющих положение центра тяжести судна. Как бы то ни было, влияние членов экипажа на положение центра величины исключено, поскольку оно связано с формой подводной части корпуса, которая (при постоянном водоизмещении и осадке судна) неизменна, а при наличии крена судна изменяется без участия человека и зависит только от осадки. Влияние человека на форму корпуса заканчивается на стадии проектирования судна.

Таким образом, очень важное для безопасности судна положение центра тяжести по высоте находится в «сфере влияния» экипажа и требует постоянного контроля посредством специальных вычислений.

Для расчетного контроля наличия у судна «положительной» остойчивости используется понятие метацентра и начальной метацентрической высоты.

Поперечный метацентр – это точка, являющаяся центром кривизны той траектории, по которой центр величины перемещается при накренении судна.

Следовательно, метацентр (так же как и центр величины) является специфической точкой, поведение которой исключительно определяется лишь геометрией формы судна в подводной части и его осадкой.

Положение метацентра, соответствующее посадке судна без крена, принято называтьначальным поперечным метацентром .

Расстояние между центром тяжести судна и начальным метацентром в конкретном варианте загрузки, измеренное в диаметральной плоскости (ДП), называется начальной поперечной метацентрической высотой .

На рисунке видно, что чем ниже располагается центр тяжести по отношению к постоянному (для данной осадки) начальному метацентру, то тем больше будет метацентрическая высота судна, т.е. тем больше оказывается плечо восстанавливающего момента и сам этот момент.

Зависимость плеча восстанавливающего момента от положения центра тяжести судна.

Таким образом, метацентрическая высота является важной характеристикой, служащей для контроля наличия у судна остойчивости. И чем больше её величина, тем больше при тех же углах крена будет величина восстанавливающего момента, т.е. противодействие судна накренению.

При малых накренениях судна метацентр приблизительно находится на месте начального метацентра, поскольку траектория центра величины (точки С ) близка к окружности, и её радиус постоянен. Из треугольника с вершиной в метацентре вытекает полезная формула, справедливая при малых углах крена (θ <10 0 ÷12 0):

где угол крена θ следует использовать в радианах.

Из выражений (1) и (2) легко получить выражение:

которое показывает, что плечо статической остойчивости и метацентрическая высота не зависят от веса судна и его водоизмещения, а представляют собой универсальные характеристики остойчивости, с помощью которых можно сравнивать остойчивость судов разных типов и размеров.

Плечо статической остойчивости

Так для судов с высоким положением центра тяжести (лесовозы) начальная метацентрическая высота принимает значения h 0 ≈ 0 – 0,30 м, для сухогрузных судов h 0 ≈ 0 – 1,20 м, для балкеров, ледоколов, буксиров h 0 > 1,5 ÷ 4,0 м.

Однако, метацентрическая высота отрицательных значений принимать не должна. Формула (1) позволяет сделать другие важные выводы: поскольку порядок величин восстанавливающего момента определяется в основном величиной водоизмещения судна Р , то плечо статической остойчивости является «управляющей величиной», влияющей на диапазон изменения момента М в при данном водоизмещении. И от малейших изменений l (θ) за счет неточностей его вычисления или погрешностей исходной информации (данные, снимаемые с судовых чертежей, либо замеряемые параметры на судне) существенно зависит величина момента М в , определяющего способность судна сопротивляться наклонениям, т.е. определяющего его остойчивость.

Таким образом, начальная метацентрическая высота играет роль универсальной характеристики остойчивости , позволяющей судить о её наличии и величине безотносительно от размеров судна.

Если проследить за механизмом остойчивости при больших углах крена, то проявятся новые особенности восстанавливающего момента.

При произвольных поперечных наклонениях судна кривизна траектории центра величины С изменяется. Эта траектория - уже не окружность с постоянным радиусом кривизны, а является некой плоской кривой, имеющей в каждой своей точке разные значения кривизны и радиуса кривизны. Как правило, этот радиус с креном судна увеличивается и поперечный метацентр (как начало этого радиуса) выходит из диаметральной плоскости и перемещается по своей траектории, отслеживая перемещения центра величины в подводной части судна. При этом, разумеется, само понятие метацентрической высоты становится неприменимым, и лишь восстанавливающий момент (и его плечо l (θ)) остаются единственными характеристиками остойчивости судна при больших наклонениях.

Однако, при этом начальная метацентрическая высота не теряет своей роли быть основополагающей исходной характеристикой остойчивости судна в целом, поскольку от её величины, как от некоего «коэффициента масштаба» зависит порядок величин восстанавливающего момента, т.е. её косвенное влияние на остойчивость судна на больших углах крена сохраняется.

Итак, для контроля остойчивости судна, осуществляемого перед загрузкой, необходимо на первом этапе оценить значение начальной поперечной метацентрической высоты h 0 , пользуясь выражением:

где z G и z M0 – аппликаты центра тяжести и начального поперечного метацентра, соответственно, отсчитываемые от основной плоскости, в которой располагается начало связанной с судном системы координат ОХYZ (Рис. 3).

Выражение (4) одновременно отражает степень участия судоводителя в обеспечении остойчивости. Выбирая и контролируя положение центра тяжести судна по высоте, экипаж обеспечивает остойчивость судна, а все геометрические характеристики, в частности, Z M0 , должны быть предоставлены проектантом в виде графиков от осадки d, называемых кривыми элементов теоретического чертежа .

Дальнейший контроль остойчивости судна производится по методике Морского Регистра судоходства (РС) или по методике Международной Морской Организации (ИМО).

Начальная поперечная метацентрическая высота

Диаграмма статической остойчивости

Плечо восстанавливающего момента l и сам момент М в имеют геометрическую интерпретацию в виде Диаграммы статической остойчивости (ДСО) (Рис.4). ДСО – этографическая зависимость плеча восстанавливающего момента l (θ) или самого момента М в (θ) от угла крена θ .

Этот график, как правило, изображают для крена судна только на правый борт, поскольку вся картина при крене на левый борт для симметричного судна отличается только знаком момента М в (θ).

Значение ДСО в теории остойчивости очень велико: это не только графическая зависимостьМ в (θ); ДСО содержит в себе исчерпывающую информацию о состоянии загрузки судна с точки зрения остойчивости. ДСО судна позволяет решать многие практические задачи в данном рейсе и является отчетным документом для возможности начать загрузку судна и отправку его в рейс.

В качестве свойств ДСО можно отметить следующие:

· ДСО конкретного судна зависит только от взаимного расположения центра тяжести судна G и начального поперечного метацентра m (или значением метацентрической высотой h 0 ) и водоизмещением Р (или осадкой d ср ) и учитывает наличие жидких грузов и запасов с помощью специальных поправок,

· форма корпуса конкретного судна проявляется в ДСО через плечо l (θ), жестко связанное с формой обводов корпуса, которое отражает смещение центра величины С в сторону входящего в воду борта при накренении судна,.

· метацентрическая высота h 0 , вычисленная с учетом влияния жидких грузов и запасов (см. ниже), проявляется на ДСО как тангенс угла наклона касательной к ДСО в точке θ = 0, т.е.:

Для подтверждения правильности построения ДСО на ней делают построение: откладывают угол θ = 1 рад (57,3 0) и строят треугольник с гипотенузой, касательной к ДСО при θ = 0, и горизонтальным катетом θ = 57,3 0 . Вертикальный (противолежащий) катет должен оказаться равным метацентрической высоте h 0 в масштабе оси l (м).

· никакие действия не могут изменить вида ДСО, кроме изменения величин исходных параметров h 0 и Р , поскольку ДСО отражает в каком-то смысле неизменную форму корпуса судна посредством величины l (θ);

· метацентрическая высота h 0 фактически определяет вид и протяженность ДСО.

Угол крена θ = θ 3 , при котором график ДСО пересекает ось абсцисс, называется углом заката ДСО. Угол заката θ 3 определяет только то значение угла крена, при котором сила веса и сила плавучести будут действовать вдоль одной прямой и l (θ 3) = 0. Судить об опрокидывании судна при крене

θ = θ 3 не будет верным, поскольку опрокидывание судна начинается гораздо раньше - вскоре после преодоления максимальной точки ДСО. Точка максимума ДСО (l = l m (θ m)) свидетельствует только о максимальном удалении силы веса от силы поддержания. Однако, максимальное плечо l m и угол максимума θ m являются важными величинами при контроле остойчивости и подлежат проверке на соответствие соответствующим нормативам.

ДСО позволяет решать многие задачи статики судна, например, определять статический угол крена судна при действии на него постоянного (независящего от крена судна) кренящего момента М кр = const. Этот угол крена может быть определен из условия равенства кренящего и восстанавливающего моментов М в (θ) = М кр . Практически эта задача решается как задача по нахождению абсциссы точки пересечения графиков обоих моментов.

Взаимодействие кренящего и восстанавливающего моментов

Диаграмма статической остойчивости отражает возможность судна создавать восстанавливающий момент при наклонении судна. Её вид имеет строго конкретный характер, соответствующий параметрам загрузки судна только в данном рейсе (Р = Р i ,h 0 =h 0i ). Судоводитель, занимающийся на судне вопросами планирования рейса погрузки и расчетами остойчивости, обязан построить конкретную ДСО для двух состояний судна в предстоящем рейсе: с неизменным первоначальным расположением груза и при 100 % и при 10 % судовых запасов.

Чтобы иметь возможность строить диаграммы статической остойчивости при различных сочетаниях водоизмещения и метацентрической высоты, он пользуется вспомогательными графическими материалами, имеющимися в судовой документации по проекту этого судна, например, пантокаренами, либо универсальной диаграммой статической остойчивости.

Пантокарены

Пантокарены поставляются на судно проектировщиком в составе информации об остойчивости и прочности для капитана. Пантокарены представляют собой универсальные графики для данного судна, отражающие форму его корпуса в части остойчивости.

Пантокарены (Рис. 6) изображены в виде серии графиков (при разных углах крена (θ = 10,20,30,….70˚)) в зависимости от веса судна (или его осадки) некоторой части плеча статической остойчивости, называемой плечом остойчивости формы – l ф (Р , θ ).

Пантокарены

Плечо формы - это расстояние, на которое переместится сила плавучести относительно исходного центра величины C ο при крене судна (Рис. 7). Понятно, что это смещение центра величины связано только с формой корпуса и не зависит от положения центра тяжести по высоте. Набор значений плеча формы при разных углах крена (при конкретном весе суднаР=Р i ) снимают с графиков пантокарен (Рис. 6).

Чтобы определить плечи остойчивости l (θ) и построить диаграмму статической остойчивости в предстоящем рейсе необходимо дополнить плечи формы – плечами веса l в , которые легко рассчитать:

Тогда ординаты будущей ДСО получаются по выражению:

Плечи остойчивости формы и веса

Выполнив вычисления для двух состояний нагрузки (Р зап. = 100% и 10%), строят на чистом бланке две ДСО, характеризующих остойчивость судна в этом рейсе. Остается выполнить проверку параметров остойчивости на их соответствие национальным или международным нормативам по остойчивости морских судов.

Существует второй способ построения ДСО, использующий универсальную ДСО данного судна (зависит от наличия на судне конкретных вспомогательных материалов).

Основной характеристикой остойчивости является восстанавливающий момент ,который должен быть достаточным для того, чтобы судно противостояло статическому или динамическому (внезапному) действию кренящих и дифферентующих моментов, возникающих от смещения грузов, под воздействием ветра,волнения и по другим причинам.

Кренящий (дифферентующий) и восстанавливающий моменты действуют в противоположных направлениях и при равновесном положении судна равны.

Различают поперечную остойчивость , соответствующую наклонению судна в поперечной плоскости (крен судна), и продольную остойчивость (дифферент судна).

Продольная остойчивость морских судов заведомо обеспечена и ее нарушение практически невозможно, в то время как размещение и перемещение грузов приводит к изменениям поперечной остойчивости.

При наклонении судна его центр величины (ЦВ) будет перемещаться по некоторой кривой, называемой траекторией ЦВ. При малом наклонении судна (не более 12°) допускают, что траектория ЦВ совпадает с плоской кривой, которую можно считать дугой радиуса r с центром в точке m.

Радиус r называют поперечным метацентрическим радиусом судна , а его центр m - начальным метацентром судна .

Метацентр - центр кривизны траектории, по которой перемещается центр величины С в процессе наклонения судна. Если наклонение происходит в поперечной плоскости (крен), метацентр называют поперечным, или малым, при наклонении в продольной плоскости (дифферент) - продольным, или большим.

Соответственно различают поперечный (малый) r и продольный (большой) R метацентрические радиусы, представляющие радиусы кривизны траектории С при крене и дифференте.

Расстояние между начальным метацентром т и центром тяжести судна G называют начальной метацентрической высотой (или просто метацентрической высотой ) и обозначают буквой h. Начальная метацентрическая высота является измерителем остойчивости судна.

h = zc + r - zg; h = zm ~ zc; h = r - a,

где а - возвышение центра тяжести (ЦТ) над ЦВ.

Метацентрическая высота (м.в.) - расстояние между метацентром и центром тяжести судна. М.в. является мерой начальной остойчивости судна, определяющей восстанавливающие моменты при малых углах крена или дифферента.
При возрастании м.в. остойчивость судна повышается. Для положительной остойчивости суд- на необходимо, чтобы метацентр находился выше ЦТ судна. Если м.в. отрицательна, т.е. метацентр располагается ниже ЦТ судна, силы, действующие на судно, образуют не восстанавливающий, а кренящий момент, и судно плавает с начальным креном (отрицательная остойчивость), что не допускается.

OG – возвышение центра тяжести над килем; OM – возвышение метацентра над килем;

GM - метацентрическая высота; CM – метацентрический радиус;

m – метацентр; G – центр тяжести; С – центр величины

Возможны три случая расположения метацентра m относительно центра тяжести судна G:

метацентр m расположен выше ЦТ судна G (h > 0). При малом наклонении силы тяжести и силы плавучести создают пару сил, момент которой стремится вернуть судно в первоначальное равновесное положение;

ЦТ судна G расположен выше метацентра m (h < 0). В этом случае момент пары сил веса и плавучести будет стремиться увеличить крен судна, что ведет к его опрокидыванию;

ЦТ судна G и метацентр m совпадают (h = 0). Судно будет вести себя неустойчиво, так как отсутствует плечо пары сил.

Физический смысл метацентра заключается в том, что эта точка служит пределом, до которого можно поднимать центр тяжести судна, не лишая судно положительной начальной остойчивости.